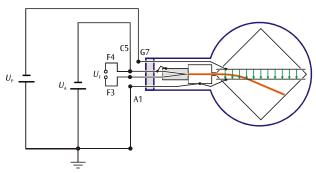
Tubo de feixe de elétrons

Tubo de Thomson

ESTUDO DO DESVIO DE ELÉTRONS EM CAMPOS ELÉTRICOS E MAGNÉTICOS


- Pesquisa do desvio de um feixe de elétrons num campo magnético.
- Pesquisa do desvio de um feixe de elétrons num campo elétrico.
- Montagem de um filtro de velocidade a partir de campos elétricos e magnéticos cruzados.
- Estimação da carga específica do elétron.

UE3070500

04/24 UK/UD

FUNDAMENTOS GERAIS

No tubo de Thomson, os elétrons passam por um diafragma de fenda em direção horizontal por trás do ânodo e encontram-se numa tela posicionada obliquamente ao percurso do feixe, sobre a qual o percurso do feixe torna-se visível. Atrás do diafragma em fenda encontra-se um condensador de placa, no campo elétrico vertical do mesmo os elétrons são desviados verticalmente. Adicionalmente, pode-se criar com bobinas de Helmholtz um campo magnético horizontal perpendicular à direção do feixe, no qual os elétrons são desviados também verticalmente:

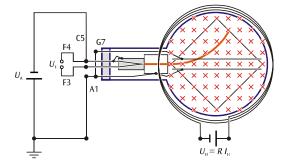


Fig. 1: Representação esquemática do tubo de Thomson. Desvio no campo elétrico (acima), abaixo, no campo magnético.

A força de Lorentz age sobre um elétron que se move com a velocidade ${\it v}$ através de um campo magnético ${\it B}$

$$\mathbf{F} = -\mathbf{e} \cdot \mathbf{v} \times \mathbf{B} \tag{1}$$

e: carga elementar

perpendicularmente à direção do movimento e do plano criado pelo campo magnético. O desvio ocorre em direção vertical quando tanto a direção do movimento como também o campo magnético se encontram no plano horizontal (veja fig. 1). Se direção do movimento é perpendicular ao campo magnético homogêneo, então os elétrons são forçados a seguir uns percurso circular cuja força centrípeta é dada pela força de Lorentz.

$$m \cdot \frac{v^2}{r} = \mathbf{e} \cdot \mathbf{v} \cdot \mathbf{B} \tag{2}$$

m: massa do elétron; r: raio do percurso circular.

A velocidade dos elétrons depende da tensão anódica U_A . É válido:

$$v = \sqrt{2 \cdot \frac{e}{m} \cdot U_{A}} \tag{3}$$

Assim pode-se determinar a carga específica do elétron a partir do rádio da órbita quando o campo magnético homogêneo B e a tensão anódica U_A são conhecidos. De (2) e (3) decorre a carga específica do elétron:

$$\frac{\mathbf{e}}{m} = \frac{2 \cdot U_{\mathsf{A}}}{(\mathbf{B} \cdot \mathbf{r})^2} \tag{4}$$

O rádio de curvatura r pode ser determinado a partir do ponto de saída do elétron desviado na tela. O campo magnético B da bobina de Helmholtz resulta da corrente de bobina $I_{\rm H}$ (veja análise).

Se é produzida uma tensão U_P no condensador de placa, então os elétrons são também desviados verticalmente no seu campo elétrico vertical E com a força

$$\mathbf{F} = -\mathbf{e} \cdot \mathbf{E}$$
 (5)

e: carga elementar

(veja fig. 1 acima). O campo elétrico, portanto, pode ser escolhido para que apenas compense o desvio no campo magnético:

$$\mathbf{e} \cdot \mathbf{E} + \mathbf{e} \cdot \mathbf{V} \cdot \mathbf{B} = \mathbf{0} \tag{6}$$

Neste caso é fácil determinar a velocidade dos elétrons. É válido:

$$V = \left| \frac{E}{B} \right| \tag{7}$$

Uma ordenação de campos elétricos e magnéticos cruzados na qual o desvio dos elétrons é reduzido a zero por compensação é chamada de filtro de velocidade.

A dependência da velocidade v da tensão de aceleração U_A resulta da comparação entre a energia potencial e a energia cinética. É

$$\mathbf{e} \cdot U_{\mathbf{A}} = \frac{m}{2} v^2 \text{ ou também } v^2 = 2 \cdot \frac{\mathbf{e}}{m} \cdot U_{\mathbf{A}}$$
 (8)

LISTA DE APARELHOS

1	Tubo de Thomson S	1000617 (U18555)

Fonte de alimentação de alta tensão 5 kV (@230 V) 1 1003310 (U33010-230)

Fonte de alimentação de alta tensão 5 kV (@115 V) 1 1003309 (U33010-115)

Fonte de alimentação DC 0 - 500 V (@230 V) 1

1003308 (U33000-230)

ou

ΩU

Fonte de alimentação DC 0 - 500 V (@115 V) 1

1003307 (U33000-115)

1 Multímetro digital P1035 1002781 (U11806)

Conjunto de 15 cabos de segurança para experiências, 75 cm 1002843 (U138021)

INDICAÇÕES DE SEGURANÇA

Tubos catódicos incandescentes são ampolas de vidro de paredes finas evacuadas. Manusear com cuidado, há perigo de implosão!

Não submeter o tubo de Thomson a qualquer esforço mecânico.

No tubo de Thomson é produzida uma tensão que pode ser perigosa ao contato:

- Utilizar sempre cabos de segurança para experiências.
- Só efetue conexões com o aparelho de alimentação elétrica desligado.
- Só desmontar ou montar os tubos de Thomson com o aparelho de alimentação elétrica desligado.

MONTAGEM

Montagem do par de bobinas de Helmholtz e do tubo de Thomson no suporte para tubo:

- Colocar ambas bobinas de Helmholtz no meio do encaixe para bobinas com as conexões viradas para fora empurrar totalmente para fora.
- Inserir o tubo de Thomson no suporte para tubos. Ao fazê-lo, prestar atenção para que os pinos de contato estejam completamente encaixados nos orifícios de contato da tomada previstos para tal. O pino do meio deve sobressair levemente do suporte.
- Empurrar ambas bobinas de Helmholtz para dentro até a marca. A distância do meio entre ambas bobinas de Helmholtz é então de 68 mm.

Conexão da tensão de aquecimento e da tensão de aceleração:

- Deixar o aparelho de alta tensão desligado e levar o botão de ajuste da tensão até ele travar à esquerda.
- Ligar os conectores F3 e F4 do suporte para tubos com a saída de tensão de aquecimento (conector azul) do aparelho de alta tensão por meio de cabos de segurança para experiências (veja também a fig. 1).
- Ligar o conector C5 do suporte para tubos com pólo negativo (conector preto) do aparelho de alta tensão por meio de cabos de segurança para experiências (os conectores C5 e F4 estão conectados entre si por dentro do tubo).
- Ligar o conector A1 do suporte para tubos com pólo positivo (conector vermelho) do aparelho de alta tensão com o conector terra verde-amarelo.

Conexão das bobinas de Helmholtz:

- Deixar desligada a fonte de alimentação DC e virar todos os reguladores de tensão totalmente para da esquerda até o inicio.
- Conectar o conector A da primeira bobina com o pólo negativo, e o conector Z com o pólo positivo da saída de 12 V.
- Conectar a segunda bobina em paralelo com a primeira, para tal, conectar as tomadas que se encontram frente a frente.
- Ligar o amperímetro em fila às duas bobinas de Helmholtz.

Conexão da tensão de desvio:

- Conectar o conector Z do suporte de tubo com o pólo negativo da saída de 500 V.
- Conectar o pólo positivo do aparelho DC com o conector verdeamarelo de terra do aparelho de alta tensão.

Observação: Caso os desvios nos campos elétrico ou magnético ocorram em direções contrárias, então deve-se inverter as conexões em cada aparelho de alimentação DC.

Fig. 2: Montagem experimental para a pesquisa do desvio em campos elétricos e magnéticos.

EXECUÇÃO

- Ligar o aparelho de alimentação de alta-tensão. O filamento fica imediatamente vermelho incandescente.
- Ajustar a tensão de aceleração em U_A = 2,0 kV e observar o percurso "horizontal" do feixe de elétrons na tela luminescente.
- Ligar o aparelho de alimentação em rede DC 0–500 V.
- Elevar lentamente a corrente que atravessa o par de bobinas de Helmholtz em 2 I_H, até que o feixe de elétrons na beira da tela luminescente passe pelo meio da escala (veja fig. 3).
- Selecionar uma tensão U_P na placa de desvio de modo que o desvio do feixe seja compensado a zero.
- Anotar a força de corrente 2 I_H e caso necessário a tensão U_P .
- Baixar a tensão U_P novamente a zero U_P.
- Repetir a medição para U_A = 3,0 e 4,0 kV.

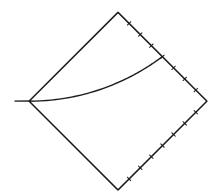


Fig. 3: Desvio do feixe de elétrons pelo meio da escala à beira da tela luminescente

- Ajustar tensão anódica U_A = 3 kV.
- Selecionar 2 I_H = 0,2 e ajustar a tensão de placa U_P , de modo que o desvio do feixe de elétrons seja compensado a zero.
- Anotar a força de corrente 2 I_H e a tensão U_P.
- Repetir a operação para 2 I_H = 0,4 A, 0,6 A e 0,8 A.

EXEMPLOS DE MEDIÇÃO

Tab. 1: (Mais necessário para o desvio magnético pelo meio da escala na aresta) corrente do par de bobinas de Helmholtz 2 $I_{\rm H}$ (compensar o desvio a zero) e placa de tensão $U_{\rm P}$ em função da tensão anódica $U_{\rm A}$.

U _A / kV	2 I _H / A	U _P / V
2,0	0,53	240
3,0	0,62	330
4,0	0,74	470

Tab. 2: Corrente de bobina de Helmholtz 2 I_H e tensão de placa compensadora U_P com tensão anódica fixa U_A = 3,0 kV

N°	2 I _H / A	U _P / V
1	0,2	100
2	0,4	225
3	0,6	360
4	0,8	440

ANÁLISE

a) O campo magnético B num par de bobinas de Helmholtz é proporcional à corrente I_H através de uma única bobina. O fator de proporcionalidade k pode ser calculado a partir do raio da bobina R = 68 mm e do número de espiras N = 320 para cada bobina:

$$B = k \cdot I_{H} \text{ com } k = \left(\frac{4}{5}\right)^{\frac{3}{2}} \cdot 4\pi \cdot 10^{-7} \frac{\text{Vs}}{\text{Am}} \cdot \frac{N}{R} = 4.2 \frac{\text{mT}}{\text{A}}$$

b) O raio de curvatura *r* do feixe de elétrons desviado é determinado na fig. 4 a partir do ponto de saída B.

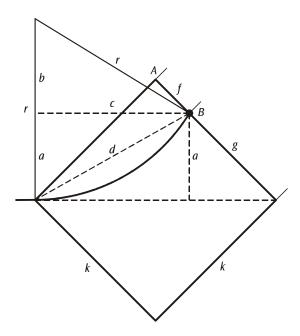


Fig. 4: Representação do cálculo do raio de curvatura *r* do percurso dos elétrons a partir da distância *f* entre o ponto de saída B e o ponto angular A

Segundo Pitágoras:

$$r^{2} = c^{2} + b^{2} = c^{2} + (r - a)^{2} = c^{2} + r^{2} - 2 \cdot r \cdot a + a^{2}$$

$$c^{2} + a^{2} = d^{2} = k^{2} + f^{2} \operatorname{com} k = 80 \operatorname{mm}$$

$$a^{2} = \frac{1}{2} \cdot g^{2} = \frac{1}{2} \cdot (k - f)^{2}$$

Assim,
$$r = \frac{c^2 + a^2}{2a} = \frac{k^2 + f^2}{\sqrt{2} \cdot (k - f)}$$

Se o ponto B se encontra no meio da escala, então f = 40 mm. Neste caso calcula-se:

$$r = 141 \text{ mm e } \frac{1}{2} \cdot r^2 = 0.1 \text{ m}^2.$$

A equação (4) pode ser assim transformada em: $\frac{e}{m} = \frac{U_A}{0.1 \text{ m}^2 \cdot B^2}$

c) O campo elétrico no condensador de placa pode ser calculado a partir da tensão $U_{\rm P}$ e da distância d=8 mm:

$$E = \frac{U_p}{d}$$

d) Para a estimativa da carga específica do elétron calcula-se o campo magnético B a partir dos valores dados na tab. 1para a corrente I_H e recebe os valores indicados na tab. 3.

A fig. 5 mostra uma representação gráfica da relação entre a tensão anódica U_A e o quadrado do campo magnético B^2 para os valores da tab. 3.

A inclinação das retas originais desenhadas é de

$$\frac{U_A}{B^2} = 1.7 \frac{\text{kV}}{\text{mT}^2}$$

A partir disto calcula-se

$$\frac{e}{m} = \frac{U_A}{0.1 \text{m}^2 \cdot B^2} = 1.7 \cdot 10^{11} \frac{\text{As}}{\text{kg}}$$

(Valor teórico:
$$\frac{e}{m} = 1.76 \cdot 10^{11} \frac{\text{As}}{\text{kg}}$$
)

Tab. 3: A partir dos valores de medição $I_{\rm H}$ calculados da tab.1, valores medidos B e B^2 em função da tensão anódica $U_{\rm A}$.

U _A / kV	B / mT	B^2 / mT ²
2,0	1,11	1,24
3,0	1,30	1,70
4,0	1,55	2,41

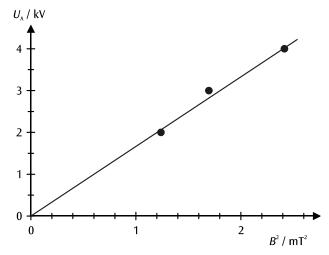


Fig. 5: Representação gráfica da relação entre U_A e B^2 com rádio de curvatura constante $r=141~\mathrm{mm}$

e) Para a confirmação da equação (7) calcula-se dos valores de medição da tab. 2 os pares de valores *B* e *E*, nos quais o desvio do feixe de elétrons é compensado a zero (veja tab. 4) e representa o resultado de um diagrama *E-B*. (veja fig. 6).

De acordo com a equação (7) os valores de medição se encontram sobre uma das retas originais, dentro da faixa de precisão. A sua inclinação corresponde à velocidade dos elétrons.

Obtém-se:
$$V = 3.2 \cdot 10^7 \frac{\text{m}}{\text{s}} \text{ (com } U_A = 3.0 \text{ kV)}$$

Tab. 4: Campo magnético B e campo elétrico compensador E com a tensão anódica U_A = 3,0 kV

N°	B / mT	E / V/mm
1	0,42	12,5
2	0,84	28,1
3	1,26	41,3
4	1,68	55,0

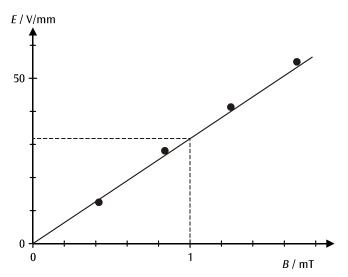


Fig. 6: Representação gráfica dos valores de medição da tab. 4

f) Com a ajuda dos valores de medição da tab. 1 pode ser determinada a velocidade ν dos elétrons para deferentes tensões anódicas $U_{\rm A}$. Inserir o resultado na tab. 5.

Tab. 5: A partir dos valores de medição $I_{\rm H}$ e $U_{\rm P}$ da tab.1 os valores calculados B e E, assim como a velocidade v daí calculada e o seu quadrado em função da tensão anódica $U_{\rm A}$.

U _A / kV	B / mT	E / V/mm	v / m/s	v ² / (m/s) ²
2,0	1,11	30,0	2,70·10 ⁷	7,3·10 ¹⁴
3,0	1,30	41,3	3,18·10 ⁷	10,1·10 ¹⁴
4,0	1,55	58,8	3,79·10 ⁷	14,4·10 ¹⁴

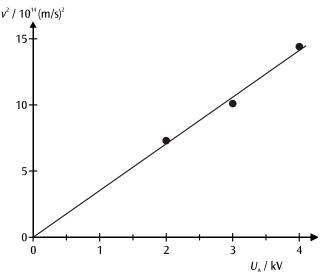


Fig. 7: Representação gráfica da relação entre v^2 e U_A

A fig. 7 mostra a relação entre o quadrado da velocidade e a tensão anódica. A partir da inclinação das retas originais inscritas pode-se, conforme a equação (8), calcular também a carga específica do elétron

Obtém-se:
$$\frac{e}{m} = \frac{v^2}{2 \cdot U_A} = 1.8 \cdot 10^{11} \frac{\text{As}}{\text{kg}}$$

(Valor teórico:
$$\frac{e}{m} = 1,76 \cdot 10^{11} \frac{\text{As}}{\text{kg}}$$
)