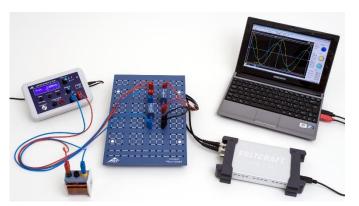
Eletricidade

Corrente contínua e alternada


Resistências de corrente alternada

DETERMINAÇÃO DA RESISTÊNCIA DE CORRENTE ALTERNADA EM UM CIRCUITO COM RESISTÊNCIA INDUTIVA E CAPACITIVA.

- Determinação da resistência do circuito de corrente alternada em ligação em série e paralela de resistência capacitiva e indutiva em dependência da frequência.
- Determinação da frequência de ressonância em dependência de indutividade e capacidade.
- Observação da alteração do deslocamento de fases entre corrente e tensão na frequência de ressonância.

UE3050321

10/16 UD

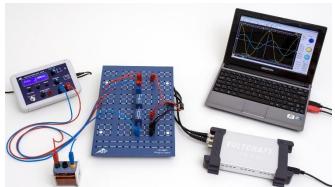


Fig. 1: Disposição de medição para ligação em série (esquerda) e para ligação em paralelo (direita).

FUNDAMENTOS GERAIS

Resistências indutivas em circuitos de corrente alternada aumentam com a frequência ascendente da corrente alternada, enquanto resistências capacitivas diminuem. Portanto, ligações em série ou paralela de resistências capacitivas e indutivas apresentam comportamento de ressonância. Fala-se em circuitos oscilantes, pois a corrente e a tensão oscilam entre capacidade e indutividade. Uma resistência ôhmica adicional reduz esta oscilação.

Para o cálculo das ligações em série ou paralelo, para simplificar, é designada uma indutividade L à resistência complexa

(1)
$$X_L = i \cdot 2\pi \cdot f \cdot L$$

f: frequência da corrente alternada

e uma capacidade C à resistência complexa

$$(2) X_{\rm C} = \frac{1}{i \cdot 2\pi \cdot f \cdot C}.$$

Para a resistência total em uma ligação em série sem resistência ôhmica, vale, então

(3)
$$Z_s = i \cdot \left(2\pi \cdot f \cdot L - \frac{1}{2\pi \cdot f \cdot C}\right)$$
,

enquanto a ligação em paralelo pode ser calculada conforme segue.

(4)
$$\frac{1}{Z_{P}} = -i \cdot \left(\frac{1}{2 \cdot \pi \cdot f \cdot L} - 2 \cdot \pi \cdot f \cdot C \right)$$

Na frequência de ressonância

$$(5) f_{r} = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$

portanto, a resistência $Z_{\rm S}$ da ligação em série de resistência indutiva e capacitiva desaparece; ou seja, as tensões em ambas as resistências unitárias são opostamente idênticas.

O valor da resistência Z_P da ligação em paralelo, por outro lado, fica infinitamente grande, ou seja, as correntes unitárias são opostamente idênticas. Na frequência de ressonância, além disso, o deslocamento de fase alterna seu sinal entre corrente e tensão.

Na experiência, são construídos circuitos oscilantes como ligação em série ou em paralelo de capacidade e indutividade. Um gerador de funções serve como fonte de tensão com frequência e amplitude ajustáveis. Com um osciloscópio, a corrente e a tensão são medidas em dependência de uma frequência ajustada. Tensão U e corrente I são representadas em um osciloscópio; nisto, I corresponde à perda de tensão $U_m(t)$ em uma resistência de trabalho R_m (Fig. 2, 3).

LISTA DE APARELHOS

1 Placa de encaixe p. elementos de montag. 1012902 (U33250) 1 Capacitor 1 µF, 100 V, 1012955 (U333063) P2W19 1 Capacitor 4,7 µF, 63 V, P2W19 1012946 (U333054) 1 Bobina S com 800 espiras 1001001 (U8498080) 1 Bobina S com 1200 espiras 1001002 (U8498085) 1 Resistor 10 Ω, 2 W, P2W19 1012904 (U333012) 1 Gerador de funções FG 100 @230V 1009957 (U8533600-230) ou @115V 1009956 (U8533600-115) 1 Osciloscópio PC 2x25 MHz 1020857 (U11830) 2 Cabo HF, BNC / conector de 4 mm 1002748 (U11257)

1002840 (U13800)

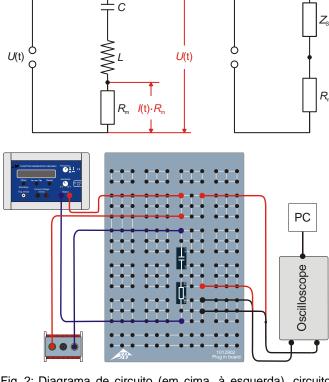
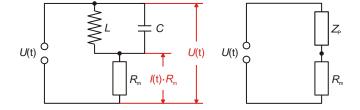



Fig. 2: Diagrama de circuito (em cima, à esquerda), circuito equivalente (em cima, à direita) e diagrama esquemático da montagem (em baixo) para a ligação em série.

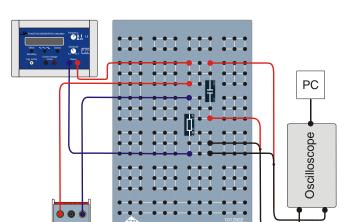


Fig. 3: Diagrama de circuito (em cima, à esquerda), circuito equivalente (em cima, à direita) e diagrama esquemático da montagem (em baixo) para a ligação em paralelo.

MONTAGEM E REALIZAÇÃO

Reihenschaltung

1 Conjunto de cabos para experiências, 75 cm, 1 mm²

Ligação em série

- Montar a disposição de medição para a ligação em série (Fig. 1, à direita) conforme o diagrama de circuito (Fig. 2) com R_m =10 Ω, C=1 μF e a bobina com N = 1200 espiras / L = 23,0 mH.
- Conectar o sinal de saída $U_m(t) = I(t) \cdot R_m$ no canal CH1 do osciloscópio e o sinal de entrada U(t) no canal CH2.
- Ajustar os parâmetros iniciais a seguir no PC-osciloscópio:

,	
Time/DIV	10 μs
Volts/DIV CH1	10.0 mV AC
Volts/DIV CH2	2.00 V AC
Trigger Mode	Auto
Sweep	Edge
Source	CH2
Slope	+
Level	0.00 μV
	·

Importante

Os parâmetros Time/DIV e Volts/DIV CH 1 precisam ser adaptados no decurso da série de medições.

- No gerador de funções, selecionar a forma de sinal senoidal e ajustar a amplitude do sinal de entrada U₀ = 6 V.
 Para isto, ajustar o seletor de amplitude de forma que o máximo ou o mínimo do sinal senoidal corresponda a 3 caixas no canal CH2 do osciloscópio (com caixas de 2 V).
- No gerador de funções, ajustar a frequência de 20000 Hz e reduzir gradativamente até 50 Hz (Tab. 1), ler a respectiva amplitude U_{m0} do sinal de saída U_m(t) no osciloscópio e inserir os valores na Tab. 1.
- Determinar a frequência de ressonância f_r como a frequência em que U_{m0} estiver no máximo. Inserir os valores para f_r e U_{m0} na Tab. 1 (em negrito).
- Repetir a medição para a bobina com N = 800 espiras / L = 10,4 mH.
- Repetir a medição para o capacitor com C=4,7 μF e ambas as bobinas.
- Anotar todas as frequências de ressonância na Tab. 2.

Ligação em paralelo

- Montar a disposição de medição para a ligação em série (Fig. 1, à esquerda) conforme o diagrama de circuito (Fig. 3) com $R_{\rm m}$ =10 Ω , C =1 μF e a bobina com N = 1200 espiras / L = 23,0 mH.
- Realizar as medições de forma análoga à ligação em série. Selecionar os mesmos parâmetros iniciais no osciloscópio USB, só selecionar Volts/DIV CH1 para 2.00 V AC.
- Determinar a frequência de ressonância fr como a frquência em que U_{m0} estiver no mínimo. Anotar os valores para fr e U_{m0} na Tab. 1 (em negrito).
- Anotar todas as frequências de ressonância na Tab. 3.

EXEMPLO DE MEDIÇÃO

Tab. 1: Frequências ajustadas f e amplitudes medidas U_{m0} do sinal de saída $U_{m}(t)$ para a ligação em série e em paralelo, R_{m} =10 Ω , C =1 μ F, N = 1200 espiras / L = 23,0 mH.

f / Hz	<i>U</i> _{m0} / V		
	Ligação em série Ligação em par		
20000	0,0194	4,5060	
10000	0,0397	3,1030	
5000	0,0826	1,6900	
2000	0,2800	0,5350	
1500	0,5080	0,2890	
1052	1,9950	0,0487	
1000	1,8470	0,0597	
800	0,6800	0,2120	
500	0,2400	0,5880	
200	0,0773	1,4080	
50	0,0193	1,9950	

Tab. 2: Frequências de ressonância medidas para a ligação em série.

	fr	
	C = 1 μF	C = 4,7 μF
N = 1200 L = 23,0 mH	1052 Hz	493 Hz
N = 800 L = 10,4 mH	1471 Hz	690 Hz

Deslocamento de fases

- Montar a disposição de medição para a ligação em série (Fig. 1, à direita) conforme o diagrama de circuito (Fig. 2) com R_m =10 Ω, C=1 μF e a bobina com N = 1200 espiras / L = 23,0 mH.
- Ajustar a frequência de ressonância f_r, reduzindo e aumentando a frequência um pouco, observando a fase.
- Repetir a medição para a bobina com N = 800 espiras / L = 10,4 mH.
- Repetir a medição para o capacitor com C =4,7 μF e ambas as bobinas.
- Repetir a medição para a ligação em paralelo.

Tab. 3: Frequências de ressonância medidas para a ligação em paralelo.

	f _r	
	C = 1 μF	C = 4,7 μF
N = 1200 L = 23,0 mH	1052 Hz	496 Hz
N = 800 L = 10,4 mH	1457 Hz	688 Hz

AVALIAÇÃO

 Calcular os valores Z₀ das resistências totais para a ligação em série e em paralelo a partir das tensões medidas U_{m0} (Tab. 1),

(9)
$$I_0 = \frac{U_{m0}}{R_m} = \frac{(U_0 - U_{m0})}{Z_0} \Leftrightarrow Z_0 = \left(\frac{U_0}{U_{m0}} - 1\right) \cdot R_m$$
,

 U_0 = 6 V, R_m =10 Ω , e anotar os valores na Tab. 4.

- Representar graficamente os valores Z_{0S} e Z_{0P} da resistência total para a ligação em série e em paralelo em dependência da frequência f (Fig. 4, Fig. 5).
- Calcular teoricamente os valores Z_{0S} e Z_{0P} das resistências totais para a ligação em série e em paralelo com auxílio das equações (3) e (4) e desenhar como linha nas Fig. 4 e Fig. 5.
- Calcular as frequências de ressonância conforme equação (5), anotar na Tab 5 e aplicar graficamente as frequências de ressonância medidas (Tab. 2, 3) contra as calculadas (Fig. 6).

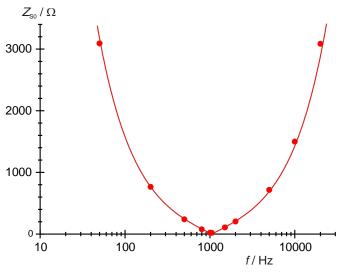


Fig. 4: Resistência de corrente alternada da ligação em série em dependência da frequência.

Tab. 4: Resistências totais determinadas pela medição Z_{0S} e Z_{0P} para a ligação em série e em paralelo.

f / Hz	$Z_{ extsf{OS}}$ / Ω	$Z_{ m OP}$ / Ω		
20000	3082,8	3,3		
10000	1501,3	9,3		
5000	716,4	25,5		
2000	204,3	102,1		
1500	108,1	197,6		
1052	20,1	1222,0		
1000	22,5	995,0		
800	78,2	273,0		
500	240,0	92,0		
200	766,2	32,6		
50	3098,8	20,1		

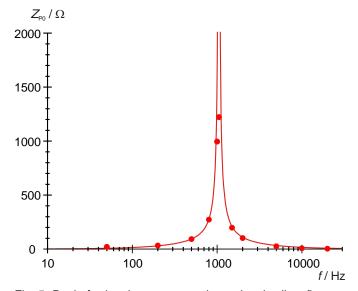


Fig. 5: Resistência de corrente alternada da ligação em paralelo em dependência da frequência.

Tab. 5: Frequências de ressonância calculadas a partir de indutividades e capacidades.

	$f_{\rm r} = 1 / \left(2 \cdot \pi \cdot \sqrt{L \cdot C} \right)$		
	C = 1 µF	C = 4,7 μF	
N = 1200 L = 23,0 mH	1049 Hz	484 Hz	
N = 800 L = 10,4 mH	1576 Hz	727 Hz	

As curvas de ressonância medidas (Fig. 4, Fig. 5) confirmam o curso esperado teoricamente (linhas). Os grandes desvios dos valores da resistência total no âmbito da frequência de ressonância podem ser explicados pela parcela ôhmica da resistência da bobina.

As frequências de ressonância medidas e calculadas conferem (Fig. 6).

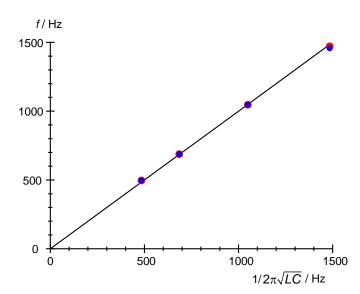


Fig. 6: Comparação entre frequência de ressonância medida e calculada para uma ligação em série (vermelho) e uma ligação em paralelo (azul).

Deslocamento de fases

Para a ligação em série, os máximos, mínimos e passagens pelo zero, na frequência de ressonância, do sinal de saída $U_m(t) = I(t) \cdot R_m$ e do sinal de entrada U(t) estão nas mesmas posições no eixo temporal, ou seja, o deslocamento de fases é de $\varphi = 0^\circ$. Se a frequência for reduzida ou aumentada, o sinal de saída se desloca em relação ao sinal de entrada para a esquerda ou para a direita na direção de $|\varphi| = 90^\circ$ hin.

Para a ligação em paralelo, os máximos, mínimos e passagens pelo zero, na frequência de ressonância, do sinal de saída $U_m(t) = I(t) \cdot R_m$ e do sinal de entrada U(t) estão nas mesmas posições no eixo temporal, ou seja, o deslocamento de fases é de $\phi = 0^\circ$. Se a frequência for reduzida ou aumentada, o sinal de saída se desloca em relação ao sinal de entrada para a direita ou para a esquerda na direção de $|\phi| = 90^\circ$, ou seja, exatamente invertido em relação à ligação em série. Con-forme a teoria, espera-se que o sinal de saída com frequên-cia de ressonância seja zero, pois a corrente é zero. Não há fase a ser observada e, com isso, não há deslocamento de fases. O fato de ser observado um sinal de saída diferente de zero e um deslocamento de fase pode ser explicado pela parcela ôhmica da resistência da bobina.