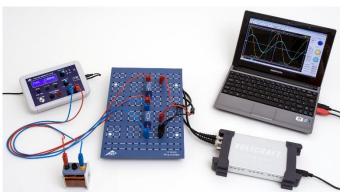
Eletricidade

Corrente contínua e alternada



Resistências de corrente alternada

DETERMINAÇÃO DA RESISTÊNCIA DE CORRENTE ALTERNADA EM UM CIRCUITO COM RESISTÊNCIA INDUTIVA E ÔHMICA.

- Determinação da amplitude e da fase da resistência total em dependência da frequência com ligação em série.
- Determinação da amplitude e da fase da resistência total em dependência da frequência com ligação em paralelo.

UE3050311 10/16 UD

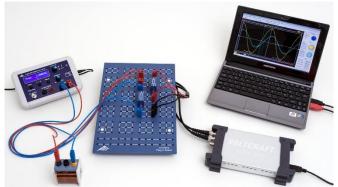


Fig. 1: Disposição de medição para ligação em série (esquerda) e para ligação em paralelo (direita).

FUNDAMENTOS GERAIS

Em circuitos de corrente alternada, resistências complexas são atribuídas a ligações com indutâncias, para simplificar, pois aqui, além das amplitudes de corrente e tensão, também devem ser observadas as relações de fase entre ambas. Ligações em série e em paralelo de resistências indutivas e ôhmicas podem então ser descritas de forma muito simples. Tensão e corrente também são observadas como grandezas complexas. Mensurável é a respectiva parte real.

A resistência complexa de uma bobina com a indutância ${\it L}$ em um circuito de corrente alternada com a frequência ${\it f}$ é

(1)
$$X_{L} = i \cdot X_{L0} = i \cdot \omega \cdot L$$

com $\omega = 2 \cdot \pi \cdot f$

Por conta disto, a ligação em série da bobina com resistência ôhmica R tem a resistência geral

(2)
$$Z_s = i \cdot 2 \cdot \pi \cdot f \cdot L + R$$
,

enquanto à ligação em paralelo, pode ser atribuída a resistência total

(3)
$$Z_P = \frac{1}{\frac{1}{i \cdot 2 \cdot \pi \cdot f \cdot L} + \frac{1}{R}}$$
.

Na formulação convencional

(4)
$$Z = Z_0 \cdot \exp(i \cdot \varphi)$$
.

torna-se

$$\begin{aligned} & (5) \quad Z_{\rm S} = Z_{\rm S0} \cdot \exp \left(i \cdot \phi_{\rm S} \right) = \sqrt{ \left(2 \cdot \pi \cdot f \cdot L \right)^2 + R^2} \cdot \exp \left(i \cdot \phi_{\rm S} \right) \\ & \text{com } \tan \phi_{\rm S} = \frac{2 \cdot \pi \cdot f \cdot L}{R} \end{aligned}$$

е

(6)
$$Z_{P} = Z_{P0} \cdot \exp(i \cdot \phi_{P}) = \frac{2 \cdot \pi \cdot f \cdot L \cdot R}{\sqrt{(2 \cdot \pi \cdot f \cdot L)^{2} + R^{2}}} \cdot \exp(i \cdot \phi_{P})$$

$$com \tan \phi_{P} = \frac{R}{2 \cdot \pi \cdot f \cdot L}.$$

Se for aplicada, na respectiva resistência total $Z = Z_S$ ou Z_P , a tensão

(7)
$$U = U_0 \cdot \exp(i \cdot 2 \cdot \pi \cdot f \cdot t)$$

flui a corrente

(8)
$$I = \frac{U_0}{Z_0} \cdot \exp(i \cdot (2 \cdot \pi \cdot f \cdot t - \varphi))$$
$$= I_0 \cdot \exp(i \cdot (2 \cdot \pi \cdot f \cdot t - \varphi))$$

Esta corrente, na experiência é determinada a partir da queda de tensão $U_{\rm m}(t)$ por uma resistência de trabalho $R_{\rm m}$ (Fig. 2, 3), dimensionada de forma que $U_{\rm m0} << U_0$, ou seja, a tensão aplicaa cai quase completamente por $Z_{\rm S}$ ou $Z_{\rm P}$. A corrente determinada assim flui tanto por $Z_{\rm S}$ quanto por $Z_{\rm P}$, pois ambas as resistências são ligadas em série a $R_{\rm m}$ (vide circuitos equivalentes nas Fig. 2, 3). Por conta de $U_{\rm m}(t) = I(t) \cdot R_{\rm m}$, o percurso temporal $U_{\rm m}(t)$ reflete o percurso temporal I(t) da corrente.

LISTA DE APARELHOS

1 Placa de encaixe p. elementos de montag. 1012902 (U33250) 1 Resistor 1 Ω, 2 W, P2W19 1012903 (U333011) 1 Resistor 100 Ω, 2 W, P2W19 1012910 (U333018) 1 Gerador de funções FG 100 1009957 (U8533600-230) @230V ou @115V 1009956 (U8533600-115) 1 Osciloscópio PC 2x25 MHz 1020857 (U11830) 2 Cabo HF, BNC / conector de 4 mm 1002748 (U11257) 1 Conjunto de cabos para 1002840 (U13800) experiências, 75 cm, 1 mm² 1 Bobina S com 800 espiras 1001001 (U8498080) 1 Bobina S com 1200 espiras 1001002 (U8498085)

MONTAGEM E REALIZAÇÃO

Ligação em série

- Montar a disposição de medição para a ligação em série (Fig. 1, à esquerda) conforme o diagrama de circuito (Fig. 2) com R_m = 1 Ω, R = 100 Ω e a bobina com N = 1200 espiras / L = 23,0 mH.
- Conectar o sinal de saída $U_m(t) = I(t) \cdot R_m$ no canal CH1 do osciloscópio e o sinal de entrada U(t) no canal CH2.
- Ajustar os parâmetros iniciais a seguir no osciloscópio PC:

 $\begin{array}{cccc} \text{Time/DIV} & 25 \ \mu\text{s} \\ \text{Volts/DIV CH1} & 2.00 \ \text{mV AC} \\ \text{Volts/DIV CH2} & 2.00 \ \text{V AC} \\ \text{Trigger Mode} & \text{Auto} \\ \text{Sweep} & \text{Edge} \\ \text{Source} & \text{CH2} \\ \text{Slope} & + \\ \text{Level} & 0.00 \ \mu\text{V} \\ \end{array}$

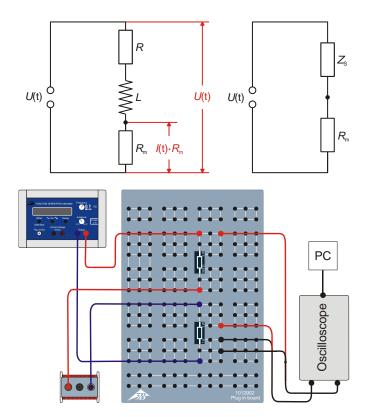
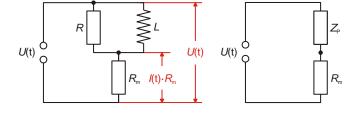



Fig. 2: Diagrama de circuito (em cima, à esquerda), circuito equivalente (em cima, à direita) e diagrama esquemático da montagem (em baixo) para a ligação em série.

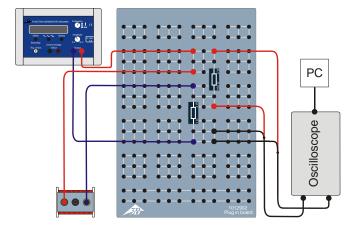


Fig. 3: Diagrama de circuito (em cima, à esquerda), circuito equivalente (em cima, à direita) e diagrama esquemático da montagem (em baixo) para a ligação em paralelo.

Importante

Os parâmetros Time/DIV e Volts/DIV CH 1 precisam ser adaptados no decurso da série de medições.

- No gerador de funções, selecionar a forma de sinal senoidal e ajustar a amplitude do sinal de entrada U0 = 6 V.
 Para isto, ajustar o seletor de amplitude de forma que o máximo ou o mínimo do sinal senoidal corresponda a 3 caixas no canal CH2 do osciloscópio (com caixas de 2 V).
- No gerador de funções, ajustar sucessivamente as frequências 10000 Hz, 5000 Hz, 2000 Hz, 1000 Hz, 5000 Hz, 2000 Hz e 50 Hz. Calcular as durações de período pertinentes conforme T = 1 / f e anotar na Tabela 1 juntamente com as frequências.
- Ler a amplitude U_{m0} do sinal de saída U_m(t) no osciloscópio e inserir os valores na Tabela 1.
- Ler a diferença de tempo Δt das passagens pelo zero dos

- sinais U(t) e $U_{\rm m}(t)$ no osciloscópio e anotar os valores na Tabela 1.
- Repetir a medição para a bobina com N = 800 espiras / L = 10,4 mH e anotar todos os valores na Tabela 1.

Ligação em paralelo

- Montar a disposição de medição para a ligação em série (Fig. 1, à direita) conforme o diagrama de circuito (Fig. 3) com R_m = 1 Ω, C = 100 Ω e a bobina com N = 1200 espiras / L = 23,0 mH.
- Realizar as medições de forma análoga à ligação em série. Selecionar os mesmos parâmetros iniciais no osciloscópio USB, só selecionar Volts/DIV CH1 para 20.0 mV AC.
- Anotar todos os valores de meidção na Tabela 2.

EXEMPLO DE MEDIÇÃO

Tab. 1: Valores de medição para a ligação em série.

f/Hz	T/ms	U _{m0} / mV		$\Delta t/\mu$ s		
		N = 1200 L = 23,0 mH	N = 800 L = 10,4 mH	N = 1200 L = 23,0 mH	N = 800 L = 10,4 mH	
10000	0,1	4,1	7,8	21	21	
5000	0,2	7,8	14,9	44	39	
2000	0,5	18,7	31,6	92	72	
1000	1,0	32,1	43,3	139	91	
500	2,0	41,8	49,3	173	97	
200	5,0	47,7	51,7	188	108	
50	20,0	49,5	52,3	211	154	

Tab. 2: Valores de medição para a ligação em paralelo.

f/Hz	T/ms	U _{m0} / mV		Δt/ μs		
		N = 1200 L = 23,0 mH	N = 800 L = 10,4 mH	N = 1200 L = 23,0 mH	N = 800 L = 10,4 mH	
10000	0,1	60,0	61,7	1,3	2,8	
5000	0,2	60,3	62,6	4,4	8,3	
2000	0,5	63,0	73,0	25,0	45,0	
1000	1,0	76,2	104,5	89.3	130,6	
500	2,0	106,0	170,9	238,2	278,6	
200	5,0	200,0	316,0	599,4	545,6	
50	20,0	323,6	431,5	883,8	614,8	

AVALIAÇÃO

• Calcular o valor da resistência indutiva conforme

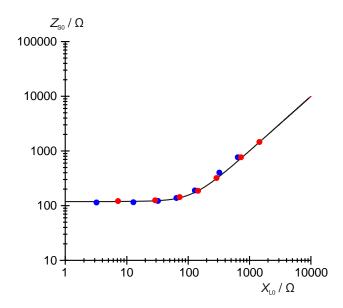
 $X_{L0} = 2 \cdot \pi \cdot f \cdot L$ (vide equação 1) e anotar os valores na Tabela 3.

- A partir dos valores para U_{m0} (Tab. 1, 2) e R_m (1 Ω), calcular a amplitude da corrente conforme $I_0 = U_{m0} / R_m$ e anotar os valores na Tabela 3.
- Calcular os valores Z_{0S} ou Z_{0P} da resistência total conforme Z₀ = U₀ / I₀ (U₀ = 6 V) e anotar os valores na Tabela 3.
- A partir dos valores para a duração do período T e da diferença de tempo Δt (Tab. 1, 2) conforme $\phi = 360^{\circ} \cdot \Delta t / T$, calcular o deslocamento de fase e anotar na Tabela 3.
- Representar graficamente os valores Z_{0S} ou Z0P da resistência total e os deslocamentos de fase φ para a ligação em série e em paralelo em dependência de X_{L0} (Fig. 4 7).
- Calcular teoricamente os valores Z_{0S} ou Z_{0P} da resistência total e os deslocamentos de fases ϕ conforme as

equações (5) para a ligação em série e (6) para a ligação em paralelo,

(9)
$$Z_{S0} = \sqrt{R^2 + X_{L0}^2}$$
, $\varphi = \arctan\left(\frac{X_{L0}}{R}\right)$

(10)
$$Z_{P0} = \frac{1}{\sqrt{\frac{1}{R^2} + \frac{1}{X_{L0}^2}}}, \ \phi = \arctan\left(\frac{R}{X_{L0}}\right),$$


e representar como linha nas Fig. 4 - 7.

Conclusão

Para alta resistência indutiva, a ligação em série assume o valor da resistência indutiva e a ligação em paralelo, o valor da resistência ôhmica. O desvio de fase fica entre 0° e 90° e totaliza 45°, quando a resistência ôhmica for igual à indutiva.

Tab. 3: Valores calculados para X_{L0} da resistência indutiva bem como valores determinados por medição para a amplitude I_0 da corrente, os valores Z_{0S} e Z_{0P} da resistência total e o deslocamento de fase φ para a ligação em série e em paralelo.

		Ligação em série			Ligação em paralelo		
<i>N</i> <i>L</i> / mH	X _{L0} / Ω	<i>I</i> ₀ / mA	Z _{S0} / Ω	φ	<i>I</i> ₀ / mA	$Z_{ extsf{P0}}$ / Ω	φ
1200	1445,1	4,1	1461,6	75,6°	60,0	100,1	4,7°
23,0	722,6	7,8	766,5	79,2°	60,3	99,4	7,9°
	289,0	18,7	320,7	66,2°	63,0	95,2	18,0°
	144,5	32,1	187,1	50,0°	76,2	78,8	32,1°
	72,3	41,8	143,5	31,1°	106,0	56,6	42,9°
	28,9	47,7	125,7	13,5°	200,0	30,1	43,2°
	7,2	49,5	121,3	3,8°	323,6	18,5	15,9°
800	653,5	7,8	766,5	75,6°	61,7	97,3	10,0°
10,4	326,7	15,0	402,9	70,2°	62,6	95,8	14,9°
	130,7	31,6	189,9	51,8°	72,9	82,3	32,4°
	65,3	43,3	138,4	32,8°	104,5	57,4	47,0°
	32,7	49,3	121,8	17,5°	170,9	35,1	50,1°
	13,1	51,7	116,0	7,8°	316,0	19,0	39,3°
	3,3	52,3	114,7	2,7°	431,5	14,0	11,1°

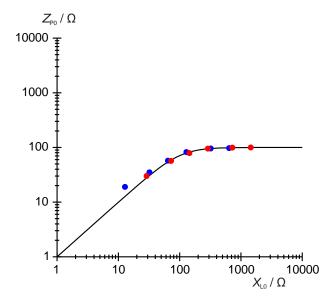
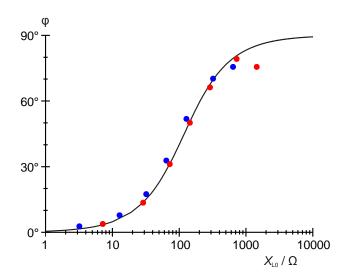



Fig. 4: Resistência total em ligação em série para as espiras N = 800 ($^{\circ}$) e N = 1200 ($^{\circ}$).

Fig. 6: Resistência total em ligação em paralelo para as espiras *N* = 800 (●) e *N* = 1200 (●).

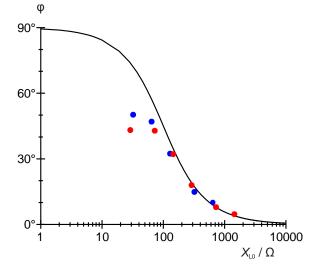


Fig. 5: Deslocamento de fase em ligação em série para as espiras N = 800 (\bullet) e N = 1200 (\bullet).

Fig. 7: Deslocamento de fase em ligação em paralelo para as espiras N = 800 ($^{\circ}$) e N = 1200 ($^{\circ}$).