Leis da térmica

Leis dos Gases

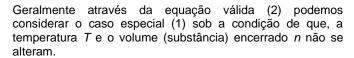
Lei de Boyle-Mariotte

MEDIÇÃO DO AR NA TEMPERATURA AMBIENTE

- Medição ponto a ponto da pressão p do ar encerrado à temperatura ambiente em relação da posição do pistão s.
- Representação dos valores de medição para três diferentes quantidades de substâncias em um diagrama p-V.
- Confirmação da Lei de Boyle-Mariotte.

UE2040100 04/16 JS

FUNDAMENTOS GERAIS


O volume de uma quantidade de gás depende da pressão sob a qual o gás se encontra e de sua temperatura. Quando a temperatura é mantida, geralmente o produto do volume e a pressão são constantes. Essa regularidade encontrada por *Robert Boyle* e *Edme Mariotte* vale para todos os gases em condições ideais, isso quer dizer, quando a temperatura dos gases está muito acima do valor da temperatura tida como crítica.

A Lei encontrada por Boyle e Mariotte

(1)
$$p \cdot V = \text{const.}$$

é um caso especial que é válido para todos os gases ideais em geral, e é chamado de Lei dos Gases, que pela sua relação entre a pressão p, o volume V, a temperatura relacionada ao absoluto ponto zero T e a quantidade da substância n que é descrita por um gás:

(2)
$$p \cdot V = n \cdot R \cdot T$$

 $R = 8.314 \frac{J}{\text{mol} \cdot \text{K}}$: constante universal do gás

Na experiência a validade da Lei de Boyle-Mariotte em temperatura ambiente no ar como gás ideal fica demonstrado. O volume V é introduzido num recipiente cilíndrico através do deslocamento e ao mesmo tempo a pressão p do ar encerrado é medida. A quantidade da substância encerrada depende n do volume de saída V_0 , na qual o ar entrou, antes do início da experiência, com a válvula aberta.

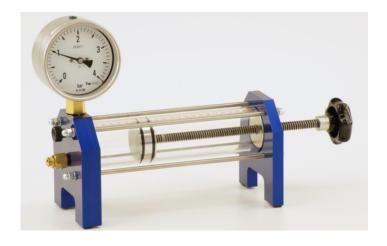


Fig. 1: Arranjo de medição

LISTA DE APARELHOS

1 Aparelho para a Lei de Boyle-Mariotte 1017366 (U172101)

EXECUÇÃO

- Colocar o pistão na posição s₀ = 24 cm, abrir a válvula e cerrar de novo.
- Ler a pressão e anotar.
- Variar a posição do pistão em passos de 1 cm e ler a pressão a cada vez e anotar.
- Colocar o pistão na posição s₀ = 12 cm, abrir a válvula e cerrar de novo.
- Começando em s₀ = 24 cm, variar a posição do pistão em passos de 1 cm e ler a pressão a cada vez e anotar.
- Colocar o pistão na posição s = 6 cm, abrir a válvula e cerrar de novo.
- Começando em s = 24 cm, variar a posição do pistão em passos de 1 cm e ler a pressão a cada vez e anotar.

EXEMPLO DE MEDIÇÃO E ANÁLISE

Diâmetro do pistão: 4 cm

Tabela 1: tabela de medição

s/cm	V _{korr} / cm ³	$s_0 = 24 \text{ cm}$ p / bar	$s_0 = 12 \text{ cm}$ p / bar	$s_0 = 6 \text{ cm}$ p / bar
24	309,3	1,02	0,52	0,28
23	296,7	1,07	0,55	0,29
22	284,1	1,11	0,58	0,30
21	271,6	1,16	0,62	0,31
20	259,0	1,22	0,63	0,32
19	246,4	1,28	0,68	0,33
18	233,9	1,34	0,71	0,35
17	221,3	1,42	0,76	0,37
16	208,7	1,50	0,78	0,39
15	196,2	1,60	0,82	0,42
14	183,6	1,72	0,88	0,45
13	171,0	1,83	0,96	0,49
12	158,5	1,99	1,02	0,51
11	145,9	2,18	1,08	0,58
10	133,3	2,38	1,18	0,62
9	120,8	2,62	1,33	0,69
8	108,2	2,96	1,46	0,78
7	95,6	3,34	1,68	0,87
6	83,1	3,90	1,97	1,00
5	70,5		2,33	1,18
4	57,9		2,90	1,45

Como a secção da superfície A do pistão é constante, o volume permite V que o ar encerrado seja facilmente calculado em relação ao percurso de deslocamento do pistão s. Para uma análise precisa dos dados, o ar contido no Manômetro também deveria ser considerado, como volume excedente V_1 .

Por conseguinte é

$$V_{\text{korr}} = s \cdot \pi \cdot 4 \text{ cm}^2 + V_1$$

Para a determinação de V_1 se buscará aquele valor, no qual o produto $p \cdot V_{korr}$ seja o mais constante possível. Obtêm-se dos dados apresentados $V_1 = 7.7$ cm³.

O número molhe contido pode então ser calculado segundo (2).

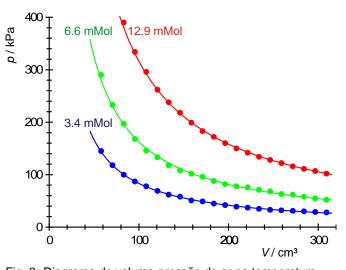


Fig. 2: Diagrama de volume-pressão de ar na temperatura ambiente, em relação a três diferentes quantidades de substâncias.