
3B SCIENTIFIC® FÍSICA

Aparelho de torsão 1018550 Conjunto de extensão do aparelho de torsão 1018787

Instruções de uso

11/15 TL/UD

1. Descrição

O aparelho de torsão destina-se à determinação do torque restaurador e do módulo de cisalhamento de barras redondas de metal a partir de medições estáticas do ângulo de torsão e da força de torsão, bem como de medições dinâmicas da duração de oscilação do pêndulo de torsão.

A força de torsão é transmitida por um disco de pêndulo para a amostra de material encaixada e o ângulo de torsão e a força de torsão são medidas com auxílio do disco de escala e um dinamômetro e a duração de oscilação é medida com auxílio de uma fotocélula e um contador digital.

2. Conteúdo do fornecimento 14 2 13 14 5 6 7

Fig. 1: Conteúdo do fornecimento.

- 1 disco de pêndulo com 4 pinos de fixação
- 2 travessa superior
- 3 haste vertical
- 4 ranhuras para travessa superior (para barras redondas com comprimento L: 500 mm, 300 mm)
- 5 haste transversal
- 6 luva de aperto
- 7 cilindro da luva de aperto
- 8 haste redonda de aço (Ø: 2 mm, L: 500 mm)
- O aparelho consiste de um disco de escala com disco de pêndulo ligado por uma haste transversal e uma travessa inferior a uma haste vertical. Uma travessa superior, juntamente com uma luva de aperto, serve como suporte para o pêndulo. A haste vertical possui ranhuras que servem como áreas de aperto para os parafusos de retenção das travessas. A travessa superior e inferior, portanto, ajustam-se automaticamente para a posição correta uma em relação à outra. O disco de pêndulo possui quatro pinos de apoio, sobre os quais podem ser colo-

- 9 retentor da barra redonda
- 10 parafusos de fixação para retentor
- 11 pesos de apoio
- 12 ranhura para travessa inferior
- 13 travessa inferior (com pés de borracha)
- 14 disco de escala

placa de suporte para fotocélula 1000563 (sem ilustração)

cados simetricamente em pares, os dois pesos de apoio.

A amostra de material é uma barra redonda de aço com um retentor para fixação no disco de pêndulo em uma das extremidades e um cilindro de luva de aperto para fixação na luva de fixação. O retentor e o cilindro da luva de aperto são fixados à barra redonda com dois parafusos sextavados internos cada.

3. Adicionalmente recomendados

Conjunto de extensão do aparelho de torsão 1018787

Conteúdo do fornecimento:

- 1 haste redonda de aço (∅: 2 mm, L: 300 mm)
- 6 hastes redondas de latão / cobre / alumínio (Ø: 2 mm, L: 300 / 500 mm)
- 2 hastes redondas de alumínio (Ø: 3 / 4 mm, L: 500 mm)

4. Aparelhos adicionalmente necessários

1	dinamômetro de precisão, 2 N	1003105					
1	dinamômetro de precisão, 5 N	1003106					
1	fotocélula	1000563					
1	contador digital @230 V	1001033					
ou							
1	contador digital @115 V	1001032					

5. Dados técnicos

Aparelho de torsão

Barra redonda

Material: aço Comprimento: 500 mm Diâmetro: 2 mm

Peso de apoio

Altura: 27 mm Diâmetro: 24 mm Peso: 100 g

Dimensões: aprox. 700x400x400 mm³ Peso: aprox. 2,9 kg

Conjunto de extensão

Material	Diâmetro	Comprimentos
Latão Cobre	2 mm	300 / 500 mm
Alumínio		
Alumínio	3 / 4 mm	500 mm

Fig. 3: Montagem da haste vertical.

6. Colocação em operação

Fig. 2: Montagem do disco de escala e da travessa inferior na haste transversal.

Fig. 4: Montagem da travessa superior (para barra redonda com L: 500 mm), luva de aperto e disco de pêndulo.

Fig. 5: Fixação da barra redonda no disco de pêndulo com auxílio do retentor e colocação da luva de aperto sobre o cilindro da luva de aperto.

Fig. 7: Fixação do disco de pêndulo.

Troca das barras redondas

A retirada das barras redondas do aparelho de torsão montado e pronto para a operação ocorre de maneira inversa às etapas de trabalho mostradas na Fig. 6 e Fig. 5, a recolocação ocorre exatamente como mostrado nas Fig. 5 e Fig. 6. A distância de trabalho ajustada inicialmente (etapa de trabalho 2 na Fig. 6) não precisa ser reajustada a cada vez, pois ela não se altera por conta do disco de pêndulo fixado inicialmente (Fig. 7).

Fig. 6: Fixação da barra redonda na luva de aperto e ajuste da distância de trabalho (≈ 8 mm) entre o disco de pêndulo e o disco de escala.

Fig. 8: Ajuste do ponto zero do disco de pêndulo.

7. Operação

7.1 Medição estática

Na medição estática, um torque com efeito tangencial é transmitido para o disco de pêndulo com auxílio do dinamômetro.

- Ajustar o ponto zero do dinamômetro 5 N.
- Enganchar o dinamômetro 5 N no pino de apoio do disco de pêndulo que se encontra na marcação 0° do disco de escala.
- Puxar o dinamômetro até que a marcação no disco de pêndulo coincida com a marcação 1 rad do disco de escala (Fig. 9). Atentar para que a força exercida pelo dinamômetro sobre o disco de pêndulo aja de forma tangencial. A marcação do disco de pêndulo e o eixo do dinamômetro precisam, para isto, abranger um ângulo de 90°.
- Ler a anotar o valor para a força aplicada no dinamômetro.

Fig. 9: Medição estática com um dinamômetro.

Instruções:

Após cada medição, verificar se a marcação no disco de pêndulo ainda coincide com a marcação 0° do disco de escala. Se for o caso, ajustar o disco de pêndulo.

Em caso de utilização de barras redondas do conjunto de extensão, é recomendado selecionar um deslocamento menor conforme comprimento e diâmetro das barras redondas.

7.2 Medição dinâmica

- Parafusar a fotocélula 1000563 sobre a placa de suporte para fotocélula. Posicionar a fotocélula fixada à placa de suporte sobre a ranhura no disco de escala um pouco à esquera ou à direita da marcação no disco de pêndulo (Fig. 10).
- Conectar a fotocélula na entrada A do contador digital. Ajustar o seletor no contador digital para o tipo de operação no símbolo para medição do tempo de período de um pêndulo.
- Deslocar o disco de pêndulo sem pesos de apoio de forma que a marcação no disco de pêndulo coincida com a marcação 1 rad do disco de escala.
- Pressionar "Início" no contador digital e soltar o disco de pêndulo. Ler a anotar o primeiro valor de medição registrado para a duração do período To na tela do contador digital.

Instruções:

Em caso de utilização de barras redondas do conjunto de extensão, é recomendado selecionar um deslocamento menor conforme comprimento e diâmetro das barras redondas.

As oscilações de torsão são, independentemente do comprimento e do diâmetro das barras redondas, fortemente amortecidas, de forma que é recomendado utilizar como valor de medição sempre o primeiro valor registrado e indicado pelo contador digital para a avaliação.

 Colocar os pesos de apoio respectivamente nos pinos de apoio no disco de pêndulo que se encontram nas marcações de 90° do disco de escala e repetir a medição descrita acima. Ler a anotar a duração do período T_{02m} do pêndulo de torsão com pesos de apoio colocados na tela do contador digital.

Fig. 10: Medição dinâmica com uma fotocélula e um contador digital.

8. Exemplo de medição

Força *F* exercida pelo dinamômetro para deslocar o disco de pêndulo em 1 rad: 2,05 N

Duração do período T_0 de um pêndulo de torsão sem pesos de apoio: 461 ms

Duração do período T_{02m} de um pêndulo de torsão com pesos de apoio: 767 ms

9. Avaliação

9.1 Momentos de inércia dos pesos de apoio

Os pesos de apoio podem ser considerados, em boa aproximação, cilindros plenos, pois os furos para os pinos de apoio podem ser desprezados. O momento de inércia *J* de um cilindro pleno é dado por

(1)
$$J = \frac{1}{2} \cdot m \cdot r^2$$
.

m: peso do cilindro pleno *r*: raio do cilindro pleno

Os momentos de inércia J_m dos pesos de apoio são obtidos a partir do Teorema de Steiner, pois os pesos de apoio oscilam ao redor do eixo do pêndulo na distância R = 10 cm.

$$J_{m} = J + m \cdot R^{2}$$

$$= \frac{1}{2} \cdot m \cdot r^{2} + m \cdot R^{2} = \frac{1}{2} \cdot m \cdot (r^{2} + 2 \cdot R^{2}).$$

O momento de inércia J_{2m} dos dois pesos de apoio juntos corresponde ao dobro:

$$J_{2m} = 2 \cdot J_{m} = m \cdot (r^{2} + 2 \cdot R^{2})$$

$$= 100 \text{ g} \cdot ((12 \text{ mm})^{2} + 2 \cdot (10 \text{ cm})^{2}).$$

$$= 0,002 \text{ kg} \cdot \text{m}^{2}$$

9.2 Medição estática

O dinamômetro exerce, à distância R = 10 cm do eixo do pêndulo, uma força tangencial F e gera, assim, um torque M:

$$(4) M = R \cdot F.$$

O torque M é diretamente proporcional ao deslocamento do pêndulo de torsão pelo ângulo φ . A constante de proporcionalidade é o torque restaurador D:

(5)
$$M = D \cdot \varphi$$
.

A partir das equações (4) e (5) e do valor de medição de 8., resulta:

(6)
$$D = \frac{R \cdot F}{\varphi} = \frac{10 \text{ cm} \cdot 2,05 \text{ N}}{1 \text{ rad}} = 0,205 \text{ Nm}.$$

O módulo de cisalhamento G é uma constante do material que descreve quantitativamente a deformação linear elástica de um material por força de cisalhamento ou tensão de cisalhamento. Ele é dado para uma barra redonda com comprimento L e diâmetro d conforme segue:

(7)
$$G = \frac{2 \cdot L \cdot D}{\pi \cdot \left(\frac{d}{2}\right)^4}$$
.

Para a barra redonda de aço, resulta, assim:

(8)
$$G = \frac{2 \cdot 500 \text{ mm} \cdot 0,205 \text{ Nm}}{\pi \cdot \left(\frac{2 \text{ mm}}{2}\right)^4} = 65,3 \text{ GPa}.$$

O valor está dentro da grandeza do valor de literatura (≈ 80 GPa segundo o tipo de aço).

9.3 Medição dinâmica

A duração do período *T* do pêndulo de torsão é dada, em geral, conforme segue:

(9)
$$T = 2 \cdot \pi \cdot \sqrt{\frac{J}{D}} \Leftrightarrow D = 4 \cdot \pi^2 \cdot \frac{J}{T^2}$$
.

J: momento de inércia D: torque restaurador

Como o momento de inércia do disco de pêndulo é desconhecido, o torque restaurador é calculado a partir da medição das durações de período T_0 und T_{02m} sem e com pesos de apoio (vide 7.2 e 8), com momento de inércia conhecido dos pesos de apoio (vide 9.1). A partir da equação (9), conclui-se:

(10)
$$D = 4 \cdot \pi^2 \cdot \frac{J_{2m}}{T_{02m}^2 - T_0^2}$$
.

 J_{2m} : momento de inércia dos pesos de apoio T_{02m} : duração do período com pesos de apoio T_0 : duração do período sem pesos de apoio

Com o momento de inércia calculado em 9.1 dos pesos de apoio e com os valores de medição de 8., resulta, por inserção na equação (10):

(11)
$$D = 4 \cdot \pi^2 \cdot \frac{0,002 \text{ kg} \cdot \text{m}^2}{(767 \text{ ms})^2 - (461 \text{ ms})^2}.$$
$$= 0,210 \text{ Nm}$$

O módulo de cisalhamento resulta da equação (7):

(12)
$$G = \frac{2 \cdot 500 \text{ mm} \cdot 0.210 \text{ Nm}}{\pi \cdot \left(\frac{2 \text{ mm}}{2}\right)^4} = 66.8 \text{ GPa}.$$

O valor está dentro da grandeza do valor de literatura (≈ 80 GPa segundo o tipo de aço).

Os valores determinados a partir da medição estática e dinâmica para o torque restaurador *D* e o módulo de cisalhamento *G* conferem até cerca de 2%.

10. Armazenagem, limpeza, eliminação

- Armazenar o aparelho em local limpo, seco e livre de pó.
- Não utilize produtos de limpeza agressivos ou solventes para limpar o aparelho.
- Para a limpeza utilizar um pano suave e úmido.
- A embalagem deve ser eliminada nas dependências locais de reciclagem.
- Em caso que o próprio aparelho deva ser descartado, então este não pertence ao lixo doméstico normal. É necessário cumprir com a regulamentação local

