Instruction sheet
02/15 Hh

1 Docking point for SEG elements
2 Input socket "IN" for Faraday cup
3 Input socket "IN" for SEG elements
4 Earth socket (reference point) for input
5 Connection socket for handling rod with 4 mm hole
6 Recessed socket for 12 V AC mains adapter
7 "On" indicator light
8 Electrometer offset adjuster
9 Earth socket (reference point) for output
10 Output socket "OUT"
11 12 V AC mains adapter
1. Safety instructions

The ultra-high-resistance input circuit of the electrometer can be damaged by applying an excessive voltage:
- Do not exceed the maximum input voltage of ± 10 V!
A higher voltage is only permissible with the condition that if a person touches conducting parts it is instantly reduced to the above or a lower value. The voltage sources mentioned in this instruction sheet fulfill that condition.
- Do not connect any external voltage source to the output socket (10)!
- If a capacitative voltage-divider circuit is used to measure voltages above 10 V, it must be provided with an SEG capacitor that can withstand the full applied voltage!

2. Description

Impedance-changer with an extremely high input resistance for measuring very small charges and very small currents.
It is suitable for quasi-static measurement of voltages up to ± 10 V, for high-resistance measurement of voltages above ± 10 V using a resistive voltage divider, for quasi-static measurement of voltages above ± 10 V using a capacitative voltage divider, for measurement of very small currents using a high-resistance shunt, and for measurement of charges.

3. Technical data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplification factor</td>
<td>1.00</td>
</tr>
<tr>
<td>Input resistance</td>
<td>> 10^{12} Ω</td>
</tr>
<tr>
<td>Output resistance</td>
<td>< 1 kΩ</td>
</tr>
<tr>
<td>Input current</td>
<td>< 10 pA</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>< 50 pF</td>
</tr>
<tr>
<td>Max. output voltage</td>
<td>±10 V</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>12 V AC / 50-69 Hz / 100 mA</td>
</tr>
</tbody>
</table>

Overvoltage tolerated for voltage sources safe against accidental contact:
- 1 kV (sources with low output resistance)
- 10 kV (sources with high output resistance)

Connections: 4 mm safety sockets
Dimensions: 110x170x30 mm³ approx.
Weight: 1 kg approx.

4. Operation

- Plug the 12 V AC adaptor into the electrometer and switch the instrument on.
- Connect a suitable voltage meter with a mid-scale zero-setting adjustment, such as analogue multimeter AM50 (1003073), multimeter ESCOLA2 (1006811), or multimeter ESCOLA10 (1006810), to the output sockets of the multimeter.
- Select the 10 V DC range and set the zero point at the middle of the scale.
- Short-circuit the “IN” (3) input socket to the earth socket (4) with a 19 mm bridging plug, or:
- Discharge (short-circuit) the Faraday cup (1000972) that is plugged into the input socket (2) by using the handling rod with 4 mm hole that is connected to the earth socket (5).
- While maintaining the short-circuit, adjust the offset of the output voltage at socket (10) to a minimum.
- Quickly carry out the measurement for the chosen experiment, before there is time for stray charges to build up at the input being measured.
- Before starting a new experiment, short-circuit the input to earth again, and if necessary readjust the offset.

5. Sample experiment

Measuring charges in electrostatics

Apparatus needed:
1 Electrometer 1001024 / 1001025
1 Analogue multimeter AM50 1003073
1 Faraday cup 1000972
1 Capacitor, 10 nF from 1006813
2 Friction rods 1002709
1 Experiment lead, 75 cm 1002843
1 Handling rod with 4 mm hole from 1006813
1 Cloth for rubbing friction rods

- Set up the experiment as shown in Figure 1.
- Plug the Faraday cup and the 10 nF capacitor into the appropriate 4 mm sockets.
- Connect the multimeter to the output socket “OUT” (10) and the corresponding earth socket (9).
- Select the 10 V DC range on the multimeter.
- Plug the experiment lead into the socket for the handling rod (5) and into the 4 mm hole in the rod.
- Take the handling rod in one hand and, without releasing it, discharge the Faraday cup.
- With the other hand, immerse the test object (e.g. the friction rod after rubbing) into the field-free interior of the Faraday cup so that the whole of its charge is within, and “wipe” the charge onto the inner surface of the cup.
- Use the relationships given below to calculate the charge that has been transferred.
- For a capacitor of capacitance C, the relationship between the charge Q and the voltage U is:
 \[Q = C \cdot U \]
- Since $U_{\text{OUT}} = U_{\text{IN}}$, the output voltage from the electrometer gives a measure of the charge Q:
 \[Q = U_{\text{OUT}} \cdot C \]
- The capacitor has the known capacitance $C = 10 \text{ nF}$, and therefore the charge can be calculated.

![Fig. 1 Experiment set-up for measuring charges in electrostatics](image-url)