

EXPERIMENT PROCEDURE

- Determine the two positions of a thin lens where a sharp image is formed.

Determine the focal length of a thin lens.

OBJECTIVE

Determine the focal length of a lens using the Bessel method

SUMMARY

On an optical bench it is possible to set up a light source, a lens, a screen and an object to be imaged n such a way that a well focussed image appears on the screen. Using the geometric relationships between the ray paths for a thin lens, it is possible to determine its focal length.

REQUIRED APPARATUS

Quantity	Description	Number
1	Optical Bench K, 1000 mm	1009696
4	Optical Rider K	1000862
1	Optical Lamp K	1000863
1	Transformer $12 \mathrm{~V}, 25 \mathrm{VA}(230 \mathrm{~V}, 50 / 60 \mathrm{~Hz})$	1000866 or
	Transformer $12 \mathrm{~V}, 25 \mathrm{VA}(115 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$)	1000865
1	Convex Lens $\mathrm{K}, \mathrm{f}=50 \mathrm{~mm}$	1000869
1	Convex Lens K, $\mathrm{f}=100 \mathrm{~mm}$	1010300
1	Clamp K	1008518
1	Set of 4 Image Objects	1000886
1	Projection Screen K, White	1000879

BASIC PRINCIPLES

The focal length f of a lens refers to the distance between the main plane of the lens and its focal point, see Fig.1. This can be determined using the Bessel method (devised by Friedrich Wilhelm Bessel). This involves measuring the various separations between the optical components on the optical bench.

From Fig. 1 and Fig. 2 it can be seen that the following relationship mus apply for a thin lens:
(1)
a: distance $\quad a=b+g$
. . b : distance between lens and image B g : distance between object G and lens

Bros these values into the lens equation
(2)

$$
\begin{aligned}
& \frac{1}{f}=\frac{1}{b}+\frac{1}{g} \\
& f: \text { focal length of lens }
\end{aligned}
$$

the following is obtained:
(3) $\quad \frac{1}{f}=\frac{a}{a \cdot g-g^{2}}$

This corresponds to a quadratic equation with the following pair of solutions:
(4)

$$
g_{12}=\frac{a}{2} \pm \sqrt{\frac{a^{2}}{4}-a \cdot f} .
$$

A sharp image is obtained for each of the object distances g_{1} and g_{2}. The difference e between them allows the focal length to be determined:
(5) $\quad e=g_{1}-g_{2}=\sqrt{a^{2}-4 a f}$

The difference e is the difference between the two lens positions P_{1} and P_{2} which result in a focussed image.

EVALUATION

A formula for the focal length of a thin lens can be derived using the Bessel method from equation (4) $f=\frac{a^{2}-e^{2}}{4 a}$

Fig. 1: Schematic showing the definition of focal length for a thin lens

Fig.2: Schematic of ray paths through a lens

fig.3: Schematic showing the two lens positions which result in a well focussed image on the screen

