
UE3050111

UE3050111

RESISTÊNCIA DE UM CAPACITOR NO CIRCUITO DE CORRENTE ALTERNADA

- Determinação da amplitude e da fase da resistência capacitiva em dependência da capacidade.
- Determinação da amplitude e da fase da resistência capacitiva em dependência da frequência.

OBJETIVO

Determinação da resistência capacitiva em dependência da capacidade e da frequência

RESUMO

Cada alteração da tensão num capacitor causa uma corrente através do capacitor. Caso seja aplicada tensão alternada, então corrente alternada fluirá com um deslocamento de fase em relação à tensão. Na experiência, um gerador de função fornece tensão alternada com frequências de até 3 kHz. Um osciloscópio de dois canais registra corrente e tensão, de forma que a amplitude e a fase de ambas as grandezas sejam investigadas. A corrente através do capacitor corresponde à queda de tensão através de um resistor de medição, cujo valor é desprezível em relação à resistência capacitiva.

APARELHOS NECESSÁRIOS

Número	Instrumentos	Artigo Nº
1	Placa de encaixe p. elementos de montag.	U33250
1	Resistor 1 Ω, 2 W, P2W19	U333011
1	Resistor 10 Ω, 2 W, P2W19	U333012
3	Capacitor 1 µF, 100 V, P2W19	U333063
1	Capacitor 0,1 µF, 100 V, P2W19	U333061
1	Gerador de funções FG 100 (230 V, 50/60 Hz)	U8533600-230 ou
	Gerador de funções FG 100 (115 V, 50/60 Hz)	U8533600-115
1	Osciloscópio USB 2x50 MHz	U112491
2	Cabo HF, BNC / conector de 4 mm	U11257
1	Conjunto de cabos para experiências, 75 cm, 1 mm²	U13800

FUNDAMENTOS GERAIS

Cada alteração da tensão num capacitor causa uma corrente através do capacitor. Caso seja aplicada tensão alternada, então corrente alternada fluirá com um deslocamento de fase em relação à tensão. Matematicamente, esta relação pode ser descrita da forma mais simples quando se utiliza corrente, tensão e resistência como grandezas complexas e se observa suas partes reais.

A partir da equação do capacitor, obtém-se imediatamente

$$I = C \cdot \frac{\mathrm{d}U}{\mathrm{d}t}$$

1: corrente, U: tensão, C: capacidade

A aplicação de uma tensão

$$U = U_0 \cdot \exp(i \cdot 2\pi \cdot f \cdot t)$$

causa, então a corrente

(3)
$$I = i \cdot \omega \cdot C \cdot U_0 \cdot \exp(i \cdot 2\pi \cdot f \cdot t)$$

e se pode atribuir à capacidade C a resistência complexa

$$X_{c} = \frac{U}{I} = \frac{1}{i \cdot 2\pi \cdot f \cdot C}$$

A parte real de cada uma das grandezas é mensurável, então

$$(5a) U = U_0 \cdot \cos \omega$$

$$I = 2\pi \cdot f \cdot C \cdot U_0 \cos\left(\omega t + \frac{\pi}{2}\right)$$

$$= I_0 \cos\left(\omega t + \frac{\pi}{2}\right)$$

(7a)
$$X_{c} = \frac{U_{0}}{I_{0}} = \frac{1}{2\pi \cdot f \cdot C}$$

Na experiência, um gerador de função fornece tensão alternada com frequências de até 3 kHz. Um osciloscópio de dois canais registra corrente e tensão, de forma que a amplitude e a fase de ambas as grandezas sejam investigadas. A corrente através do capacitor corresponde à queda de tensão através de um resistor de medição, cujo valor é desprezível em relação à resistência capacitiva.

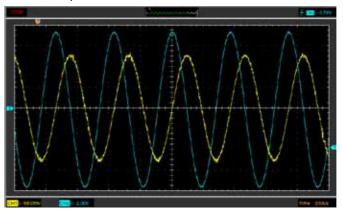


Fig. 1: Capacitor no circuito de corrente alternada: Percurso da corrente e da tensão

ANÁLISE

De acordo com a equação (4), a resistência capacitiva X_C é proporcional ao valor inverso da frequência f e ao valor inverso da capacidade C. Nos diagramas correspondentes, os valores de medição estão, assim, no âmbito da precisão de medição, em uma reta de origem. A corrente através do capacitor precede a tensão no condensador na

A corrente através do capacitor precede a tensão no condensador na fase por 90°, pois a corrente de carga (sinal positivo) e a corrente de descarga (sinal negativo) são máximas, se a tensão atingir seu ponto zero.

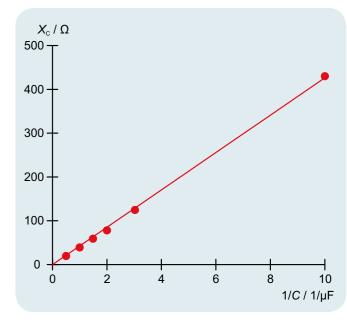


Fig. 2: Resistência capacitiva $X_{\rm C}$ como função do valor inverso da capacidade C

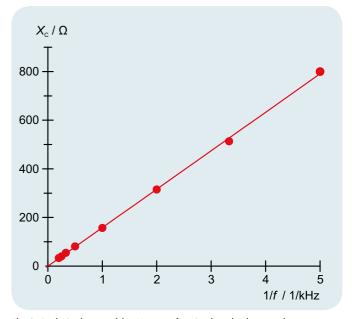


Fig. 3: Resistência capacitiva $X_{\rm C}$ como função do valor inverso da frequência f