GENERAL PRINCIPLES
Any change in voltage across a capacitor gives rise to a flow of current through the component. If an AC voltage is applied, alternating current will flow which is shifted in phase with respect to the voltage. In mathematical terms, the relationship can be expressed most easily if current voltage and impedance are regarded as complex values, whereby the real components need to be considered.

The capacitor equation leads directly to the following:

$$
\text { (1) } \quad I=c \cdot \frac{d U}{d} \mathrm{Current}, U: \text { Voltage, } c: \text { Capacitance }
$$

Assume the following voltage is applied:
(2) $\quad U=U_{0} \cdot \exp (i \cdot 2 \pi \cdot f \cdot t)$

This gives rise to a current as follows:
(3)

$$
\begin{aligned}
& \text { nt as tollows: } \\
& I=i \cdot \omega \cdot C \cdot U_{0} \cdot \exp (i \cdot 2 \pi \cdot f \cdot t)
\end{aligned}
$$

Capacitor C is then assigned the complex impedance
(4) $x_{c}=\frac{U}{I}=\frac{1}{i \cdot 2 \pi \cdot f \cdot C}$

The real component of this is measurable, therefore

SUMMARY

Any change in voltage across a capacitor gives rise to a flow of current through the component. If an AC voltage is applied, alternating current will flow which is shifted in phase with respect to the voltage. In this experiment, a frequency generator supplies an alternating voltage with a frequency of up 103 kHz . A dual-channel oscilloscope is used to record the voltage and current, so that the amplitude and phase of both can be determined. The current through the capacitor is given by the voltage drop across a resistor with a value which is negligible in comparison to the impedance exhibited by the capacitor itself.

REQUIRED APPARATUS

Quantity	Description	Number
1	Plug-In Board for Components	1012902
1	Resistor $1 \Omega, 2 \mathrm{~W}, \mathrm{P} 2 \mathrm{~W} 19$	1012903
1	Resistor $10 \Omega, 2 \mathrm{~W}, \mathrm{P} 2 \mathrm{~W} 19$	1012904
3	Capacitor $1 \mu \mathrm{FF}, 100 \mathrm{~V}, \mathrm{P} 2 \mathrm{~W} 19$	1012955
1	Capacitor $0.1 \mathrm{\mu F}, 100 \mathrm{~V}, \mathrm{P} 2 \mathrm{~W} 19$	1012953
1	Function Generator FG $100(230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$)	1009957
	Function Generator FG 100 ($115 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$)	1009956
1	USB Oscilloscope $2 \times 50 \mathrm{MHz}$	1017264
2	HF Patch Cord, BNC/4 mm Plug	1002748
1	Set of 15 Experiment Leads, $75 \mathrm{~cm} 1 \mathrm{~mm}^{2}$	1002840

EVALUATION

The capacitive impedance X_{c} is proportional to the inverse of the frequency f and the inverse of the capacitance C. In the relevant graphs, the measurements therefore lie along a straight line through the origin within the measurement tolerances.
The phase of the current is 90° ahead of that for the voltage, since charg. ing current (positive sign) and discharge current (negative sign) reach their maxima when the voltage passes through zero

fig. 2 Capacitive impedance X_{c} as a function of the inverse of the capacitance C

