ELECTRICITY / MAGNETIC FIELDS

UE3030350

ELECTRIC BALANCE

EXPERIMENT PROCEDURE

- Measurement of the force exerted on a current-carrying conductor as a function of the amperage.
- Measurement of the force exerted on a current-carrying conductor as a function of its length.

• Calibration of the magnetic field.

You can find technical information about the equipment at 3bscientific.com

1

OBJECTIVE

Measurement of the force exerted on a current-carrying conductor located inside a magnetic field

SUMMARY

The electric balance is based on *André-Marie Ampères'* experiments on electric current. It measures the electro-dynamic force sometimes referred to as the Lorentz force on a current carrying conductor situated in a magnetic field using a balance. In this experiment the current conductor is suspended from a rigid suspension system and exerts the equal and opposite force on the permanent magnets as the electro-dynamic force generated by the magnetic field. The result is the apparent change in weight of the permanent magnets.

REQUIRED APPARATUS

Quantity	Description	Number
1	Current Balance Equipment Set	1019188
1	Electronic Scale Scout Pro 200 g (230 V, 50/60 Hz)	1009772
1	DC Power Supply 0 – 20 V, 0 – 5 A (230 V, 50/60 Hz)	1003312
1	Stainless Steel Rod 250 mm	1002933
1	Tripod Stand 150 mm	1002835
1	Two-pole Switch	1018439
3	Pair of Experiment Leads, 75 cm	1002850

BASIC PRINCIPLES

The electric balance is based on *André-Marie Ampères*' experiments on electrical current. It measures the force exerted on a current-carrying conductor located in a magnetic field with the aid of a balance. In the experiment a modern electronic precision balance weighs a permanent magnet. The weight measured changes in accordance with Newton's 3rd law when an electro-dynamic force is exerted on a current-carrying conductor entering a magnetic field.

On the balance lies a permanent magnet which generates a horizontal magnetic field B. In this arrangement a horizontal current conductor of length Land suspended from a rigid bar is dipped vertically into the magnetic field. The electro-dynamic force from the magnet acts on the conductor

 $\boldsymbol{F}_{\mathrm{L}}=\boldsymbol{N}\cdot\boldsymbol{e}\cdot\boldsymbol{v}\times\boldsymbol{B},$

(1)

e: elementary charge,

N: total number of all electrons participating in electrical conduction

The mean drift velocity v is all the greater, the greater the current *I* flowing through the conductor:

(2)	$I = n \cdot e \cdot A \cdot v$
	n: number of all electrons involved in the current conduction,
	A: cross-section of the conductor
-	
From	
(3)	$N = n \cdot A \cdot L$
	L: length of the conductor
we obt	ain
(4)	$\mathbf{F}_{\cdot} = l \cdot l \cdot \mathbf{e} \times \mathbf{B}$
(-)	
or	
(5)	$F_{\rm L} = I \cdot L \cdot B$

since the unit vector e pointing in the direction of the conductor is located perpendicular to the magnetic field. In accordance with Newton's third law, an equal and opposite force F is exerted on the permanent magnet. Depending on the sign, the weight G of the permanent magnet measured on the balance is either increased or decreased. Thanks to the balance's tare function, the weight G can be electronically offset so that the balance immediately displays the opposing force F.

EVALUATION

It has been demonstrated that the current dependency of the electrodynamic force or Lorentz force can be accurately described by a straight line through the origin (Fig. 2). This is not the case for conductor length dependency (Fig. 3) due to the fact that here boundary effects play a role at the ends of the conductor. The magnetic field of the fully assembled permanent magnet is computed from the linear gradients $a_2 = B L$ in Fig. 2 and $a_3 = B I$ in Fig. 3.

Fig. 1: Schematic depiction of the electro-dynamic force $F_{\rm L}$ on the currentcarrying conductor and the total force G + F on the balance.

Fig. 2: Force F_1 as a function of the amperage I

Fig. 3: Force F_L as a function of the conductor length L