ELECTRICITY / ELECTROSTATICS

UE3010700

ELECTRIC FIELD IN A PLATE CAPACITOR

EXPERIMENT PROCEDURE

- Measuring the electric field within a plate capacitor as a function of the distance between the plates.
- Measuring the electric field within a plate capacitor as a function of the applied voltage.

OBJECTIVE Measure the electric field in a plate capacitor using the electric field meter.

SUMMARY

The electric field meter can be used to measure the electric field within a plate capacitor directly. In this experiment a rotating sectored disc interrupts the electrostatic flux falling on an induction plate, which forms part of a capacitor plate. The voltage pulses that are thereby generated are amplified to give an output voltage, which is then rectified to give a DC voltage that is proportional to the electric field *E* acting on the induction plate.

REQUIRED APPARATUS

Quantity	Description	Number	
1	Electric Field Meter (230 V, 50/60 Hz)	1001030	or
	Electric Field Meter (115 V, 50/60 Hz)	1001029	
1	DC Power Supply 450 V (230 V, 50/60 Hz)	1008535	or
	DC Power Supply 450 V (115 V, 50/60 Hz)	1008534	
1	Digital Multimeter E	1006809	
1	Analogue Multimeter AM50	1003073	
1	Set of 15 Safety Experiment Leads, 75 cm	1002843	

BASIC PRINCIPLES

The electric field meter can be used to measure electric fields directly. In front of an induction plate with four sectors in a star-shaped arrangement, a fan-like disc of similar shape is rotated. It continually interrupts the electrostatic flux, and thereby causes periodic induced charges, which are allowed to dissipate through a large resistance. The voltage pulses that are thereby generated are amplified to give an output voltage, which is then rectified to give a DC voltage that is proportional to the electric field *E* acting on the induction plate.

In the experiment, the electric field strength

$E = \frac{U}{d}$ (1)

in a plate capacitor is measured using the electric field meter. The applied voltage *U* and the distance *d* between the plates are varied in separate experimental runs.

EVALUATION

In applying Equation 1, one must take into account the fact that the induction plate is about 1 mm below the lower capacitor plate. Therefore, Equation 1 must be replaced by:

$$E = \frac{U}{d_{\text{eff}}} = \frac{U}{d + 1\,\text{mm}}$$

Fig. 1: Electric field inside the plate capacitor as a function of the effective distance between the plates.

Fig. 2: Rotating sectored disc of the electric field meter.