THERMODYNAMICS / THERMAL EXPANSION

UE2010301

WATER ANOMALY

EXPERIMENT PROCEDURE

- Measure the thermal expansion of water over a temperature range between 0°C and 15°C.
- Demonstrate the thermal anomaly.
- Determine the temperature when the density is at a maximum.

OBJECTIVE Determine the temperature where water reaches its maximum density.

SUMMARY

When temperature is raised from 0°C to about 4°C the volume of a mass of water initially becomes smaller and only begins to expand thermally at higher temperatures. The density of water is therefore at its greatest at around 4°C.

REQUIRED APPARATUS		
Quantity	Description	Number
1	Device for Demonstrating the Anomaly of Water	1002889
1	Plastic Trough	4000036
1	Magnetic Stirrer	1002808
1	Digital Thermometer, 1 Channel	1002793
1	K-Type NiCr-Ni Immersion Sensor, -65°C – 550°C	1002804
Additionally recommended:		
1	Funnel	1003568
1	Tubing, Silicone 6 mm	1002622
1	Stainless Steel Rod 470 mm	1002934
1	Clamp with Jaw Clamp	1002829
1	Tripod Stand 150 mm	1002835

BASIC PRINCIPLES

Water is unlike most other materials in that up to a temperature of about 4°C it initially contracts and only starts expanding at higher temperatures. Since the density is inversely related to the volume of a mass, water thus reaches its maximum density at about 4°C.

The experiment involves measuring the expansion of water in a vessel with a riser tube. The height *h* to which water rises up the tube is measured as a function of the water temperature ϑ . Neglecting the fact that the glass vessel also expands at higher temperatures, the total volume of the water in the vessel and in the tube is given by:

(1)
$$V(\vartheta) = V_0 + \pi \cdot \frac{d^2}{4} \cdot h(\vartheta)$$

d: Internal diameter of tube, V_0 : Volume of vessel

If the expansion of the vessel is taken into account, equation (1) becomes

(2)
$$V(\vartheta) = V_0 \cdot (1 + 3 \cdot \alpha \cdot \vartheta) + \pi \cdot \frac{d^2}{4} \cdot h(\vartheta)$$

 α = 3.3 10⁻⁶ K⁻¹: Linear expansion coefficient of glass

EVALUATION

Water density ρ is derived from equations (1) and (2) as follows:

$$\frac{\rho(\vartheta)}{\rho(0^{\circ}\mathsf{C})} = \frac{V_0 + \pi \cdot \frac{d^2}{4} \cdot h(0^{\circ}\mathsf{C})}{V_0 \cdot (1 + 3 \cdot \alpha \cdot \vartheta) + \pi \cdot \frac{d^2}{4} \cdot h(\vartheta)}$$

The maximum for this expression is at $\vartheta = 3.9^{\circ}$ C.

Fig. 1: Relative density of water as a function of temperature

