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You can find  
technical information  
about the equipment  
at 3bscientific.com

EXPERIMENT  
PROCEDURE

•  Measure the deformation profile with 

loads in the centre and loads away from 

the centre.

•  Measure the deformation as a function 

of the force.

•  Measure the deformation as a function 

of the length, width and breadth as well 

as how it depends on the material and 

determine the modulus of elasticity of 

the materials.

BENDING OF FLAT BEAMS

MECHANICS / DEFORMATION OF SOLID BODIES

UE1090200 UE1090200

SUMMARY
A flat, level beam’s resistance to deformation in the form of bending by an external force can be 

 calculated mathematically if the degree of deformation is much smaller than the length of the beam. 

The deformation is proportional to the modulus of elasticity E of the material from which the beam 

is made. In this experiment, the deformation due to a known force is measured and the results are 

used to determine the modulus of elasticity for both steel and aluminium.

OBJECTIVE
Measurement of deformation of flat beams 

supported at both ends and determination 

of modulus of elasticity

The curvature therefore involves the local bending moment:

(2)  

 where : Area moment of inertia

 

As an alternative to the radius of curvature ρ(x), in this experiment the 

deformation profile w(x), by which the neutral segments are shifted from 

their rest position, will be measured. This can be calculated as follows, as 

long as the changes dw(x)/dx due to the deformation are sufficiently small:

(3) ,

the deformation profile is obtained from this by double integration.

A typical example is to observe a beam of length L, which is supported at 

both ends and to which a downward force F acts at a point a. In a state of 

equilibrium the sum of all the forces acting is zero:

(4)  

Similarly, the sum of all the moments acting on the beam at an arbitrary 

point x is also zero:

(5)  

No curvature or deformation arises at the ends of the beam, i.e. 

M(0) = M(L) = 0 and w(0) = w(L) = 0. This means that M(x) is fully 

 determinable:

(6)  

 where and 

The deformation profile is obtained by double integration

(7)  

In the experiment the shape of this profile is checked for load at the centre 

of the beam (α = 0.5) and off-centre (α < 0.5).

EVALUATION
When the load is in the centre, then  

For a rectangle of width b and height d, the following calculation is 

made:

 

Then .

REQUIRED APPARATUS
Quantity Description Number

1 Apparatus for Measuring Young’s Modulus 1018527

1 Young’s Modulus Supplementary Set 1018528

1 Pocket Measuring Tape, 2 m 1002603

1 External Micrometer 1002600

BASIC PRINCIPLES
A flat, level beam’s resistance to deformation in the form of bending by an external force can be 

calculated mathematically if the degree of deformation is much smaller than the length of the 

beam. The deformation is proportional to the modulus of elasticity E of the material from which 

the beam is made. Therefore the deformation due to a known force can be measured and the 

results are used to determine the modulus of elasticity.

For the calculation, the beam is sliced into parallel segments which are compressed on the inside by 

the bending and stretched on the outside. Neutral segments undergo no compression or extension. 

The relative extension or compression ε of the other threads and the associated tension σ depends on 

their distance z from the neutral segments:

(1) and 

ρ(x): Local radius of curvature due to bending 
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Fig. 1: Measured and calculated deformation profile for 

load acting at centre and off-centre

Fig. 3: How the deformation depends on (L/d)3

Fig. 4: Modulus of elasticity of steel and aluminium 

Fig. 2: Confirmation of Hooke’s law
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