UE1070310

实验步骤
－测量室温下，两个声源间，脉冲声波在时间 \boldsymbol{t} 内传播的距离 s

- 验证 s 和 t 之间的线性关系
- 室温下，两个声源间的固定距离里，测量脉冲声波在温度 T 时的传播时间 t
－测量温度与声速（群速）之间的关系

－将测量结果和拉普拉斯推导进行比较

实验目的
 测量钫冲声波在昆特管里的传播时间。

概述

声波在空气中是纵向传播的，本实验所讲的群速即为相速度。试验中我们将测量昆特管里两个声源间脉冲声波的传播时间，并用此结果来求声速，声速传播的温度将被从室温到 $50^{\circ} \mathrm{C}$ 进行验证，测量结果将于拉普拉斯推导进行匹配。

所需仪器

UE1070310

基本原理

声波在可形变介质中是弹性波，声波的速度取决于介质的弹性，在简单气体里，声波仅仅以纵波的形式传播，群速就等于相速度。

根据拉普拉斯推导，声波在空气里被视为绝热压力或密度的变化，声速即为：
（1）

$$
c=\sqrt{\frac{C_{p}}{C_{v}} \cdot \frac{p}{\rho}} .
$$

p ：压力．ρ ：密度．

$$
c_{\mathrm{P}}, c_{\mathrm{V}}: \text { 气体的热容 }
$$

绝热温度 T 下的理想气体：
（2）

$$
\begin{gathered}
\frac{p}{\rho}=\frac{R \cdot T}{M} . \\
R=8,314 \frac{\mathrm{~J}}{\mathrm{Mol} \cdot \mathrm{~K}}: \text { 通用气体常数 } \\
M: \text { 摩尔质量 }
\end{gathered}
$$

因此声波在空气中的速度为：

$$
\text { (3) } \quad c=\sqrt{\frac{C_{p}}{C_{V}} \cdot \frac{R \cdot T}{M}} \text {. }
$$

相较于参考温度 T_{0} ，温差 ΔT 不是很大，因此声速与温差变化 ΔT 呈线性关系。
（4）

$$
c=\sqrt{\frac{C_{P}}{C_{v}} \cdot \frac{R \cdot T_{0}}{M}} \cdot\left(1+\frac{\Delta T}{2 \cdot T_{0}}\right)
$$

假设干燥的气体为理想气体，声速通常如下表示：

$$
\begin{gather*}
c(T)=\left(331,3+0,6 \cdot \frac{\Delta T}{\mathrm{~K}}\right) \frac{\mathrm{m}}{\mathrm{~s}} \tag{5}\\
T_{0}=273.15 \mathrm{~K}=0^{\circ} \mathrm{C}
\end{gather*}
$$

试验中，我们将测量两个距离为 s 的声源间声波的传播时间 t ，电压脉冲控制的扬声器薄膜的振动产生了声波，当脉冲声波到达第一个麦克风探针时开启微妙计时器，当脉冲声波到达距离为 s 的第二个麦克风探针时关闭微妙计时器，这样来测量声波的传播时间。
用加热元件来加热昆特管里的空气使其达到 $50^{\circ} \mathrm{C}$ ，以此来测量温度和传播时间之间的函数关系，冷却过程中的温度分布是充分均匀的。因此可以在昆特管内的某一点测量温度，通过管接头还可给昆特管输入不同于空气的其他气体。

评价

声速是传播距离 s 和传播时间 t 的商，

$$
c=\frac{s}{t}
$$

图2表示声速即为斜率的倒数，
公式（3）中描述的速度与温度的依赖关系有如下参数：

$$
M=28,97 \frac{\mathrm{~g}}{\mathrm{Mol}}, \frac{C_{\mathrm{p}}}{C_{\mathrm{v}}}=\frac{7}{5}
$$

图1：实验设置示意图

图2：室温下传播时间 t 与传播距离 s 的曲线图

图3：速度与温度的曲线图。
实线：根据公式（3）计算虚线：根据公式（5）计算

