MECHANICS / OSCILLATIONS

UE1050101

HARMONIC OSCILLATION OF A STRING PENDULUM

EXPERIMENT PROCEDURE

• Measure the period of oscillation T of a string pendulum as a function of the length of the pendulum *L*.

- Measure the period of oscillation T of a string pendulum as a function of the mass of the pendulum bob *m*.
- Determine the acceleration due to gravity g.

SUMMARY

The period of oscillation T for a string pendulum is dependent on the length of the pendulum L, but does not depend on the mass of the bob m. This is to be verified by a series of measurements in which the period of oscillation of such a pendulum is measured by means of a photoelectric sensor connected to a digital counter.

REQUIRED APPARATUS

Quantity	Description	Number	
1	Set of 4 Pendulum Bobs	1003230	
1	Cord for Experiments	1001055	
1	Tripod Stand 185 mm	1002836	
1	Stainless Steel Rod 1500 mm	1002937	
1	Stainless Steel Rod 100 mm	1002932	
1	Clamp with Hook	1002828	
2	Universal Clamp	1002830	
1	Photo Gate	1000563	
1	Digital Counter (230 V, 50/60 Hz)	1001033	or
	Digital Counter (115 V, 50/60 Hz)	1001032	
1	Pocket Measuring Tape, 2 m	1002603	
1	Electronic Scale 200 g	1003433	

BASIC PRINCIPLES

A string pendulum with a bob of mass m and a length L will exhibit simple harmonic oscillation about its rest point as long as the angle of deflection is not too great. The period *T*, i.e. the time it takes for the pendulum to swing from one end of its motion to the other end and back, is dependent solely on the length of the pendulum L and not on the mass m.

If the pendulum is deflected from its rest position by an angle ϕ , the restoring force is as follows:

(1a) $F_1 = -m \cdot g \cdot \sin \varphi \, .$

For small angles φ , this closely approximates to the following:

(1b) $F_1 = -m \cdot g \cdot \phi$

The moment of inertia of the accelerated mass is given by

2)	$F_2 = m \cdot L \cdot \ddot{\varphi}$
	-

Both these forces are equal, thus the result is equivalent for the equation of motion for simple harmonic oscillation:

(3)
$$\ddot{\varphi} + \frac{g}{L} \cdot \varphi = 0$$

For the period of oscillation *T* the following applies:

 $T = 2\pi \cdot \sqrt{\frac{L}{a}}$ (4)

In this experiment the period of oscillation will be measured for various lengths of pendulum and masses of bob with the help of a photoelectric sensor connected to a digital counter. The digital counter's internal programming is such that it halts the time measurement after each complete swing of the pendulum.

UE1050101

EVALUATION

The measurements are plotted on a graph of *T* against *L* and another one of T against m. These graphs will show that the period of oscillation depends on the pendulum's length and not on the mass of the bob, as expected.

Fig. 1: Period of oscillation *T* as a function of the pendulum length *L*

Fig. 2: Period of oscillation *T* as a function of the pendulum mass *m*