UE1040500

实验步骤

－验证转盘的旋转频率 f_{R} 和旋转仪的旋进周期 T_{P} 呈线性关系，并通过测绘 f_{R} $\left(T_{\mathrm{p}}\right)$ 函数图确定转动惯量
－通过绘制 $f_{N}\left(f_{R}\right)$ 或是同期 $T_{R}\left(T_{N}\right)$ 曲线图，验证转盘的旋转频率 f_{R} 和旋转仪的回转频率 f_{N} 呈线性关系

实验目的
 探究旋转仪的旋进和回转并测定其转动惯量

概述

圆盘的旋转运动分为旋进和回转，主要取决于是否有外力的作用，且作用在圆盘转轴上的额外力矩会使平衡。
状态下的旋转圆盘偏离原先的平衡位置．由于旋进周期取决于自转周期，这样就可以测定转盘的转动惯量。

所需仪器

数量	描述	型号
1	旋转仪	U52006
2	光栅	U11365
1	激光二极管，红色	U22000
1	3B NET $/ \log ^{T M}(230 \mathrm{~V}, 50 / 60 \mathrm{~Hz})$	U11300－230 或
	3B NET／og $(115 \mathrm{~V}, 50 / 60 \mathrm{~Hz})$	U11300－115
1	3B NET $/ a b^{\text {TM }}$	U11310
3	三脚架 150 mm	U13270
3	广用夹	U13255
3	不锈钢棒 750 mm	U15003

UE1040500

基本原理

旋转陀螺是一个绕给定点的固定轴旋转的刚体，如果有外力作用在轴上，那么它的力矩会使角动量产生变化，陀螺就会沿着垂直于轴和作用在它上面的外力的方向移动，这样的运动就称为旋进，如果陀螺被从旋转轴推开那它就会进行倾斜运动，这种运动就称为回转运动，总之，这两种运动是互相叠加的。

试验中，我们使用的是旋转仪而不是陀螺，其大转圆盘绕固定在某一支撑点的轴进行低摩擦旋转，调整轴承点与重心一致来达到平衡，如果旋转仪处于平衡状态，且圆盘处于旋转状态，那么动量 L 是恒定的：

$$
L=I \cdot \omega_{R}
$$

I ：转动惯量，ω_{R} 角速度
如下是旋转仪的转盘的转动惯量：

$$
\begin{equation*}
I=\frac{1}{2} \cdot M \cdot R^{2} \tag{2}
\end{equation*}
$$

M ：圆盘的质量，R ：圆盘的半径
如果通过质量为 m 的物块作用在旋转轴上，额外的重力会产生一个扭矩使角动量发生变化。

$$
\begin{equation*}
\tau=m \cdot g \cdot r=\frac{\mathrm{d} L}{\mathrm{~d} t} \tag{3}
\end{equation*}
$$

r ：旋转轴的支撑点到额外重力的距离
然后旋转轴以如下角度作旋转，如图片2所示。
（4）

$$
d \varphi=\frac{d L}{L}=\frac{m \cdot g \cdot r \cdot d t}{L}
$$

同时也开始旋进，这样就可以推导出旋进角速度：

$$
\begin{equation*}
\omega_{P}=\frac{\mathrm{d} \varphi}{\mathrm{~d} t}=\frac{m \cdot g \cdot r}{L}=\frac{m \cdot g \cdot r}{l \cdot \omega_{R}} \tag{5}
\end{equation*}
$$

$$
\text { 当 } \omega=2 \pi / T=2 \pi f \text { : }
$$

$$
\begin{equation*}
\frac{1}{T_{\mathrm{R}}}=f_{R}=\frac{m \cdot g \cdot r}{l} \cdot T_{P} \tag{6}
\end{equation*}
$$

如果圆盘在没有任何额外外部扭矩作用下旋转，并且旋转轴微微偏向一边，那么旋转仪就会开始回转，且回转的角速度与自转的角速度成正比。

$$
\begin{gather*}
\omega_{N}=C \cdot \omega_{R} \text { 和 } T_{R}=C \cdot T_{N} \tag{7}\\
C: \text { 常数 }
\end{gather*}
$$

借助光电挡光板本实验包括回转，旋进和自传运动，这样随着时间发生变化的脉冲被 3B NET／og ${ }^{\text {TM }}$ 和 3B NET／ab ${ }^{\text {TM }}$ 记录和显示。

评价

通过记录脉冲随着时间的变化可以测定自传，旋进和回转的周期，根据公式（6）可以看出旋进周期与自传周期成反比，而回转周期和自转周期成正比。
试验中可以通过 $f_{\mathrm{R}}\left(T_{\mathrm{P}}\right)$ 的斜率得出旋转仪转盘的转动惯量，
并将其与公式（2）求出的理论值进行比较。

图1：旋转仪旋进示意图

图2：旋转仪回转示意图

图3：转盘的自传频率 f_{R} 对应其旋进周期 T_{P} 的函数关系图

图4：Period of rotation T_{R} as a function of period of nutation T_{N}

