

EXPERIMENT
PROCEDURE
Record distance as a function of time

- Determine the speed at any given point as a function of time.

Determine the acceleration at any given point as a function of time.

Determine the average acceleration as a fit to the data and compare with the quotient of force and mass.

OBJECTIVE

SUMMARY

When uniformly accelerated motion takes place the velocity at any instant is linearly proportional to he time, while the relationship between distance and time is quadratic. These relationships are to be recorded in an experiment using a roller track with the combination of a spoked wheel employed as a ulley and a photoelectric light barrier

REQUIRED APPARATUS		
Quantity	Description	Number
1	Trolley Track	1003318
1	3B NET/og't ($230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$)	1000540 or
	3 BET Nog'm ($115 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$)	1000539
1	3 B NETIab ${ }^{\text {ma }}$	1000544
1	Photo Gate	1000563
1	Cord, 100 m	1007112
1	Set of Slotted Weight, $10 \times 10 \mathrm{~g}$	1003227

BASIC PRINCIPLES

The velocity v and acceleration a at any given point in time are defined as first and second-order differentials of the distance s covered after a time t. This definition can be verified experimentally by using differential quotients instead of the actual differentials on a plot with the distance sampled at close intervals where the displacement points s are matched with measurements of time $\boldsymbol{t}_{\mathrm{n}}$. This provides a framework for experimentally investigating, for example, uniformly accelerated motion.
For constant acceleration a, the instantaneous velocity v increases in pro portion to the time t, assuming the centre of gravity was initially at rest: ${ }^{(1)}$

$$
v=a \cdot t
$$

The distance covered s increases in proportion to the square of the time:

$$
s=\frac{1}{2} \cdot a \cdot t^{2}
$$

Constant acceleration results from a constant accelerating force F, as long as the mass m being accelerated does not change:
(3) $a=\frac{F}{m}$

These relationships are to be investigated in an experiment using a carriage on a roller track. The carriage is accelerated uniformly because it is pulled by a thread subjected to a constant force, which is provided by a weight of known mass attached to the other end of the thread, see Fig. 1. The pulley
for the thread takes the form of a spoked wheel and the spokes periodically Cor the thread takes the form of a spoked wheel and the spokes periodicaly interupt a photoelectric light barrier. A measuring interface is attached that data to a computer for ${ }^{2}$ veluation The evaluation software calust the distace coered timest ang with the corespodins values for ing values for on at that instant.
(4b)

$$
v_{\mathrm{n}}=\frac{\Delta}{t_{n+1}-t_{n-1}}
$$

(4c)

$$
a_{\mathrm{n}}=\frac{\frac{\Delta}{n_{n+1}-t_{\mathrm{n}}}-\frac{\Delta}{\frac{t_{n+1}-t_{n-1}}{}-t_{n-1}}}{2}
$$

$$
\Delta=20 \mathrm{~mm} \text { : distance between spokes }
$$

Measurements are made for various combinations of accelerating force and accelerated mass m.

EVALUATION

The evaluation software can display the values s, v and a as a function of time t. Applicability of equations (1) and (2) is checked by matching the results with various expressions using the acceleration a as a parameter. If m_{1} is the mass of the carriage and m_{2} is the mass of the weight hansing from the thread. Since the mass m_{2} also undergoes acceleration, then the values to be used in equation (3) are:

$$
F=m_{2} \cdot g \text { and } m=m_{1}+m \text {, }
$$

$$
a=\frac{m_{2}}{m_{1}+m_{2}} \cdot g
$$

Fig. 1: Schematic illustration of measuring principle

Fig. 2: Distance as a function of time

Fig. 3: Velocity as a function of time

Fig. 4: Acceleration as a function of time

