UE1020850

阿基米德原理

实验目的

测定向上的浮力和浸没深度的函数关系

概述

阿基米德原理即为浸入液体中的物体受到向上的力 F_G (上升力或者浮力),这个力的大小等于被排出液体的重力

对于浸没的规则物体,只要浸没的深度 h 小于物体的本身高度 H ,浮力和 h 是成比例关系的。

实验步骤

- 测力浸在水中的体所受的力
- 探究并确定向上的浮力和物体浸在水中 的深度的比例关系
- 测量密度

数量	描述	型号
1	体积 100 cm³ 物块	U15037
1	精密测力计,5 N	U20034
1	游标卡尺 ,150 mm	U10071
1	10个一套的高筒烧杯	U14211
1	Ⅱ型升降台	U15020
1	150 mm 三脚架	U13270
1	750mm不锈钢棒	U15003
1	带夹子的挂钩	U13252

基本原理

阿基米德原理是浸入液体中的物体受到向上的力 F_G (上升力或者浮力),这个力的大小等于被排出液体的重力

对于表面积为 A 高度为 H 的规则的浸没物体,当浸没深度为 h 时,有如下应用:

(1) 当 h < H 时, $F_G = \rho \cdot g \cdot A \cdot h$ 以及

(2) 当 h > H 时, $F_G = \rho \cdot g \cdot A \cdot H$

实验中使用一个重力 F_0 的物块,物块由测力计拉着,而物块浸入水中的深度 h,所以上述所有的力遵循下面公式:

$$F(h) = F_0 - F_G(h)$$

评价

向上的浮力 F_G 与相对深度 h/H 的函数关系图为一条经过原点的直线,其斜率如下: $a = \rho \cdot g \cdot A \cdot H$

水的密度可以从直线的斜率求得。

图2: 力的图示图

