

实验目的
测定向上的浮力和浸没深度的函数关系

概述

阿基米德原理即为浸入液体中的物体受到向上的力 F_{G}（上升力或者浮力），这个力的大小等于被排出液体的重力
对于浸没的规则物体，只要浸没的深度 h 小于物体的本身高度 H ，浮力和 h 是成比例关系的。

实验步骤

- 测力浸在水中的体所受的力
- 探究并确定向上的浮力和物体浸在水中的深度的比例关系
－测量密度

UE1020850

基 本 原 理

阿基米德原理是浸入液体中的物体受到向上的カ F_{G}（上升カ或者浮カ），这个力的大小等于被排出液体的重力

对于表面积为 A 高度为 H 的规则的浸没物体，当浸没深度为 h 时，有如下应用：
（1）当 $h<H$ 时，$F_{G}=\rho \cdot g \cdot A \cdot h$
以及
（2）当 $h>H$ 时，$F_{G}=\rho \cdot g \cdot A \cdot H$

实验中使用一个重力 F_{0} 的物块，
物块由测力计拉着，而物块浸入水中的深度 h ，
所以上述所有的力遵循下面公式：
（3）

$$
F(h)=F_{0}-F_{G}(h)
$$

评价

向上的浮力 F_{G} 与相对深度 h / H 的函数关系图为一条经过原点的直线，其斜率如下：$a=\rho \cdot g \cdot A \cdot H$

水的密度可以从直线的斜率求得。

图1：向上的浮力与相对深度 h / H 的曲线图

图2：力的图示图

