

EXPERIMENT PROCEDURE

- Measure the force on a body immersed
in water.
- Determine the updraught and confirm that it is proportional to the depth to which the body is immersed.
- Determine the density of water.

OBJECTIVE

Determining buoyant updraught as a function of immersion depth.

SUMMARY

Archimedes' principle states that a body immersed in a fluid experiences an upward force (updraught or force of buoyancy) F_{G}. The magnitude of this force is equal to the weight of the displaced fluid. For a regularly shaped immersed body, the updraught is proportional to the depth h to which the body is immersed as long as this is smaller than the height H of the body itself.

REQUIRED APPARATUS		
Quantity	Description	Number
1	Immersion Block Al $100 \mathrm{~cm}^{3}$	$\mathbf{1 0 0 2 9 5 3}$
1	Precision Dynamometer 5 N	$\mathbf{1 0 0 3 1 0 6}$
1	Callipers, 150 mm	$\mathbf{1 0 0 2 6 0 1}$
1	Set of 10 Beakers, Tall Form	$\mathbf{1 0 0 2 8 7 3}$
1	Laboratory Jack II	$\mathbf{1 0 0 2 9 4 1}$
1	Tripod Stand 150 mm	$\mathbf{1 0 2 8 8 3 5}$
1	Stainless Steel Rod 750 mm	$\mathbf{1 0 0 2 9 3 5}$
1	Clamp with Hook	$\mathbf{1 0 0 2 8 2 8}$

BASIC PRINCIPLES

Archimedes' principle states that a body immersed in a fluid experiences an upward force (updraught or force of buoyancy) F_{G}. The magnitude of this force is equal to the weight of the displaced fluid.

For a regularly shaped immersed body with a surface area A and height H, immersed to a depth h, the following applies:
(1)
and
(2)

$$
F_{G}=\rho \cdot g \cdot A \cdot h, \text { where } h<H
$$

and

$$
F_{G}=\rho \cdot g \cdot A \cdot H \text {, where } h>H
$$

This experiment uses a block of weight F_{0}. This weight acts on a dynamometer at the same time as the block is immersed in water to a depth h, so that the total force present is given by the following:
(3)
$F(h)=F_{0}-F_{6}(h)$

EVALUATION
The values measured for the updraught F_{G} as a function of the relative immersion depth h / H all lie on a straight line through the origin with the following gradient: $a=\rho \cdot g \cdot A \cdot H$

The density of water can be calculated from this gradient.

Fig. 1: Updraught F_{G} as a function of relative immersion depth h / H

Fig. 2: Schematic representation

