UE1020850

UE1020850

ARCHIMEDES' PRINCIPLE

OBJECTIVE

Determining buoyant updraught as a function of immersion depth.

SUMMARY

Archimedes' principle states that a body immersed in a fluid experiences an upward force (updraught or force of buoyancy) F_{G} . The magnitude of this force is equal to the weight of the displaced fluid. For a regularly shaped immersed body, the updraught is proportional to the depth h to which the body is immersed as long as this is smaller than the height H of the body itself.

EXPERIMENT PROCEDURE

- Measure the force on a body immersed in water.
- Determine the updraught and confirm that it is proportional to the depth to which the body is immersed.
- Determine the density of water.

REQUIRED APPARATUS

Quantity	Description	Number
1	Immersion Block Al 100 cm ³	1002953
1	Precision Dynamometer 5 N	1003106
1	Callipers, 150 mm	1002601
1	Set of 10 Beakers, Tall Form	1002873
1	Laboratory Jack II	1002941
1	Tripod Stand 150 mm	1002835
1	Stainless Steel Rod 750 mm	1002935
1	Clamp with Hook	1002828

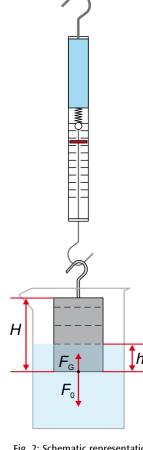
BASIC PRINCIPLES

Archimedes' principle states that a body immersed in a fluid experiences an upward force (updraught or force of buoyancy) F_6 . The magnitude of this force is equal to the weight of the displaced fluid.

For a regularly shaped immersed body with a surface area A and height H, immersed to a depth h, the following applies:

(1)
$$F_{\rm G} = \rho \cdot g \cdot A \cdot h \text{ , where } h < H$$
 and

(2)
$$F_{G} = \rho \cdot g \cdot A \cdot H, \text{ where } h > H$$


This experiment uses a block of weight F_0 . This weight acts on a dynamometer at the same time as the block is immersed in water to a depth h, so that the total force present is given by the following:

$$F(h) = F_0 - F_G(h)$$

EVALUATION

The values measured for the updraught F_6 as a function of the relative immersion depth h/H all lie on a straight line through the origin with the following gradient: $a = \rho \cdot g \cdot A \cdot H$

The density of water can be calculated from this gradient.

 $\uparrow F_0 - F_G$

Fig. 2: Schematic representation

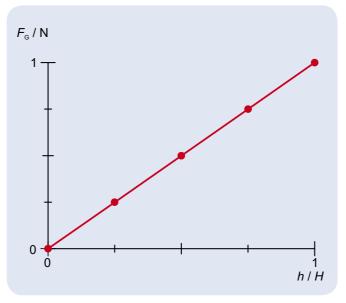
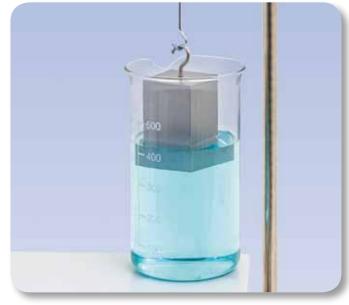



Fig. 1: Updraught F_G as a function of relative immersion depth h/H

