

EXPERIMENT PROCEDURE:

Measure the height of the curvature h for two watch glasses for a given distance s between the tips of the spherometer legs.

Determine the radius of curvature R of both glasses.

Compare the methods for both convex and concave surfaces.

OBJECTIVE

Determine the radius of curvature of various watch glasses.

SUMMARY

from the height h of a spherical surface above a point on a plane defined by the corners of an equilat eral triangle, the radius of curvature R of the spherical surface may be determined. This can be done for both convex and concave curvatures of the sphere.

REQUIRED APPARATUS		
Quantity	Description	Number
1	Precision spherometer	$\mathbf{1 0 0 2 9 4 7}$
1	Plane mirror	$\mathbf{1 0 0 3 1 9 0}$
1	Set of 10 watch glass dishes, 80 mm	$\mathbf{1 0 0 2 8 6 8}$
1	Set of 10 watch glass dishes, 125 mm	$\mathbf{1 0 0 2 8 6 9}$

BASIC PRINCIPLES

A spherometer consists of a tripod with the three legs tipped by stee points and forming an equilateral triangle with sides of 50 mm . A micrometer screw, the tip of which is the point to be measured, passes through the centre of the tripod. A vertical rule indicates the height h of the measured point above a plane defined by the tips of the three legs. The height of the measured point can be read off to an accuracy of $1 \mu \mathrm{~m}$ with the aid of a circular scale that rotates along with the micrometer screw.

The relationship between the distance r of all three legs from the centre of the spherometer, the radius of curvature R to be determined and the heigh h of the surface is given by the following equation
(1) $\quad R^{2}=r^{2}+(R-h)^{2}$

Rearranging for R gives:
(2)

$$
R=\frac{r^{2}+h^{2}}{2 \cdot h}
$$

The distance r can be calculated from the length s of the sides of the equilateral triangle formed by the legs
(3) $r=\frac{s}{\sqrt{3}}$

Thus the relevant equation for R is as follows:
(4) $R=\frac{s^{2}}{6 \cdot h}+\frac{h}{2}$

EVALUATION

The separation s between the legs of the spherometer is in this case 50 mm . When the height h is small, equation (4) can be simplified to the following:

$$
R=\frac{s^{2}}{6 \cdot h}=\frac{2500 \mathrm{~mm}^{2}}{6 \cdot h} \approx \frac{420 \mathrm{~mm}^{2}}{h}
$$

The scale of the spherometer allows readings for heights between 10 mm and $1 \mu \mathrm{~m}$ to an accuracy of $1 \mu \mathrm{~m}$, so that radii of curvature of about 40 mm to 400 m can be calculated.

Schematic for measurement of radius of curvature by means of a spherometer Top: Vertical cross section for measuring an object with a convex surface Middle: Vertical cross section for measuring an object with a concave surface Bottom: View from above

